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1
INTRODUCTION

1.1. STUDYING MENTAL DISORDERS
The field of psychopathology is dedicated to the scientific study of men-
tal disorders, focusing on understanding their symptoms, causes, and
treatments [1–3]. Mental disorders include a wide range of conditions
that impact mood, cognition, and behavior, causing distress and mental
dysfunction in people’s daily lives [4]. Common mental disorders include
depressive disorders, anxiety disorders, eating disorders, bipolar disor-
der, schizophrenia, and post-traumatic stress disorder (PTSD), among
others [5].

Mental disorders are highly prevalent, affecting millions of individuals
worldwide [6]. The roots of mental disorders have not been discovered,
and it is questionable if that can ever be achieved using a reduction-
ist approach that focuses on breaking down complex phenomena into
simplest components (e.g., biological mechanisms) [3, 7]. Mental dis-
orders are characterized by a wide range of signs and symptoms that
can vary significantly between individuals and over time. For instance,
their etiologies involve multiple and overlapping factors, such as biolog-
ical, psychological, and social factors [8, 9]. This makes it challenging to
diagnose, treat, and generally understand the underlying mechanisms.

Starting with the challenge of diagnosing, mental disorders can be dif-
ficult to identify, leading to cases where they remain untreated [10].
For instance, symptoms may not be severe or immediately recognized
as part of a disorder, which can delay or prevent proper diagnosis and
treatment [11, 12]. Additionally, some individuals may experience sub-
clinical symptoms that do not fully meet the diagnostic criteria but still
impact their well-being [12]. The complexity of diagnosis can be fur-
ther supported by the fact that many mental disorders share overlapping
symptoms, making it hard to accurately distinguish between them [13].
This overlap can lead to misdiagnoses or the assignment of multiple di-
agnoses, complicating treatment and care.

However, even if a disorder is identified and treated, many people do
not benefit sufficiently from the current methods of treatment [14, 15].

1
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There have been cases of patients not responding at all to any treatment,
or initially improving for a short time before relapse [16]. Therefore,
another significant challenge in the field is the effective treatment of
mental disorders and the prevention of relapse.

Poor treatment outcomes point to a significant gap in scientific under-
standing and clinical practice, suggesting that current methods may not
fully address the complexities of mental disorders. This gap may arise
either from flawed conceptualizations of the underlying mechanisms of
mental disorders or from ineffective methods of capturing these mecha-
nisms.

1.2. CONCEPTUALIZING MENTAL DISORDERS
Historically, the traditional medical model (also known as the disease
model or common cause model) conceptualizes mental disorders the
same way as physical illnesses [3, 17, 18]. According to this model, both
mental and physical disorders arise from common causes. That is, an un-
derlying common cause - likely a biological mechanism - gives rise to a
set of independent symptoms. In this framework, symptoms are viewed
as indicators of underlying common causes. By focusing on identifying
and treating this root cause, the medical model has been a dominant
framework for diagnosing mental health disorders.

While this approach has proven effective for many physical illnesses,
where a clear biological cause (such as a virus or genetic mutation) can
often be identified, it falls short when applied to mental disorders. Mental
health conditions are inherently more complex, usually lacking a singu-
lar, identifiable biological cause and involving multiple interactions be-
tween genetic, environmental, psychological, and social factors. As a
result, traditional diagnostic models may oversimplify this complexity.

In the next subsection, relying on the medical model, the categorical
model is examined that continues to dominate mental health diagnos-
tics today, although it may not fully capture the complexity of mental
disorders. Following, an alternative conceptualization is introduced, the
network approach, which may offer a more accurate representation of
the underlying mechanisms of mental disorders.

1.2.1. CATEGORICAL DIAGNOSING MODEL
This traditional medical model, which assumes that disorders arise from
common underlying causes, has heavily influenced the development of
diagnostic frameworks in mental health. As a result, it is common for
professionals/practitioners in the field of mental health to rely heavily on
categorical approaches for their diagnoses [19]. As noted by [20], at-
tempts to organize and categorize the natural world can be traced back
to the ancient Greeks, who relied on subjective judgments to discern sim-
ilarities between organisms or objects. Similarly, in the context of mental
disorders, unified categorical models for conceptualizing and diagnosing
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mental health conditions are based on manuals, such as the Diagnos-
tic and Statistical Manual of Mental Disorders (DSM, currently DSM-5)
[21, 22]. While the DSM offers a standard framework for organizing the
phenomena of mental disorders and classifying them into categories (or
classes), it incorporates several conceptual flaws that may contribute to
insufficient treatment outcomes.

• According to DSM, the classification process is unified across indi-
viduals. It assumes that mental disorders manifest similarly in all
individuals, meaning that all exhibiting the same symptoms fall into
the same disorder/class [23]. However, such a scheme overlooks
the significant variability in how symptoms present and progress.
This one-size-fits-all model fails to account for the individual nature
of mental health conditions, leading to treatment strategies that are
not likely to be effective for everyone.

• DSM uses a categorical classification system. This system divides
mental disorders into discrete categories based on the appearance
and the frequency of symptom clusters. While this simplifies the
diagnostic process, it does not fully reflect the complexity of mental
disorders. Most individuals do not fit exactly into one category, as
the same symptoms usually overlap in categorizing multiple disor-
ders [24]. This hard classification can drive wrong diagnoses that
further complicate treatment.

• Another issue is about the criteria to belong to a category. For di-
agnosis, DSM-5 relies on symptom checklists. By checking only the
presence of some symptoms, other important aspects, such as the
underlying mechanisms and context of these symptoms, are typi-
cally ignored. This reinforces the scheme of "common cause” that
handles symptoms as the main causes of each disorder [7].

• Regarding DSM’s checklists, the assumption for a diagnosis is that a
fixed number of symptoms must be present. This criterion creates
the possibility that two individuals with different symptom profiles
may receive the same diagnosis [25]. For instance, one individ-
ual might display symptoms 1 through 5, while another might show
symptoms 5 through 9, with both being diagnosed with the same
disorder despite experiencing very different aspects of the condi-
tion. Consequently, this oversimplified diagnosis approach can im-
pact treatment strategies, failing to address the unique needs of
each individual.

Given the challenges of diagnosing mental disorders, the traditional
medical model, which views symptoms as arising from a common under-
lying cause, may not fully capture the complexity of these conditions [7].
To address these limitations, recently, there has been a paradigm shift to
the network approach to psychopathology.
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1.2.2. NETWORK APPROACH TO PSYCHOPATHOLOGY
Unlike the traditional medical model, the network approach conceptu-
alizes mental disorders not as the result of a single underlying cause,
but as complex systems where psychopathological-related variables (or
elements) interact with and influence each other directly [8, 24, 26].
This conceptualization shift is illustrated in Figure 1.1. The involved
psychopathological-related variables extend beyond symptoms, includ-
ing other types of psychopathological information, such as mood states,
behavior, thoughts and context factors.

Mental
Disorders

V1 V2 V3 V4

V1

V5

V4V3V2

Mental Disorders

Figure 1.1: Conceptualization shift from the medical model (left), where
mental disorders are the result of a single underlying
cause, to the network approach to psychopathology (right),
where mental disorders arise from the interacting symptoms
(adapted from [27]).

According to the network approach to psychopathology, the psycho-
pathology-related variables - instead of being indicators of a common
cause - are assumed to cause one another [24, 28]. For example, by
reinforcing or inhibiting one another, this paradigm shift highlights the
importance of interplay between variables, where each one can influence
and be influenced by others, creating a complex network of relationships.
This way, mental disorders can be easily represented by networks (or
graphs) that consist of variables (as nodes) and pairwise relations (as
edges) between them [29]. Networks are a popular representation, also
seen in other fields, such as social networks, where people are connected
through relationships, and neural networks where neurons are connected
through axons and dendrites [30, 31].

A central idea of conceptualizing mental disorders as networks is a
more straightforward discovery of the pathways through which psycho-
pathology-related variables influence each other [28]. This facilitates
the identification of key variables that play a central role in the disorder,
which is important for accurate diagnosis, but possibly also for treatment
[32]. Instead of treating the disorder, the network’s advantage is to facil-
itate treating the present crucial variables and relations or interactions.
Specifically, intervening on these key variables and/or connections can
potentially influence the structure of the entire network, offering new
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approaches for treatment [33].
From a network perspective, this approach presents an additional ben-

efit in hard or challenging cases, where psychopathology-related vari-
ables do not clearly correspond to a specific disorder, such as in comor-
bidities [24]. By analyzing the pathways of variables across different
disorders, network models can reveal connections that might go unde-
tected by traditional diagnostic methods.

COMORBIDITY

The network approach significantly enhances our understanding regard-
ing comorbidities, which is the condition of an individual simultaneously
exhibiting symptoms of two or more disorders [34]. Traditionally, comor-
bidities are handled independently, ignoring the complex interactions
between the symptoms of different disorders. However, through a net-
work, various psychopathology-related variables, belonging to several
disorders, are taken into account. Therefore, the interactions among all
the variables and consequently all the potentially involved disorders can
be represented and analyzed [24]. Figure 1.2 illustrates an example of
comorbidity between two disorders using the network approach. This
insight is essential for recognizing the central variables that can help in
developing more effective treatments, especially for hard comorbid con-
ditions.

Consequently, this approach also supports a shift in understanding
mental disorders, moving from a diagnosis-specific focus to a broader,
trans-diagnostic perspective [35, 36]. This shift facilitates the integration
of multiple clinical insights, enhancing our ability to address the complex
nature of mental health conditions.

V1

V3

V2

B1

B2

V4

V5

Y1

Y5

Y4

Y3

Y2

Disorder A Disorder BBridge
 Symptoms

Figure 1.2: From a network perspective, comorbidity arises as a result of
direct relations between the bridge symptoms (B1, B2), that
overlap between disorders A and B (adapted from [24]).

This alternative conceptualization should be further investigated for its
ability to improve the understanding and treatment of mental disorders.
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1.3. MODELING THE NETWORK APPROACH TO
PSYCHOPATHOLOGY

The primary objective of network models in the field of psychopathology
is to describe the underlying complex relations among a diverse set of
psychopathology-related variables [37]. Depending on the nature of the
variables collected and the specific requirements of the experimental de-
sign, various network models can be applied. Such models are borrowed
from the fields of multivariate statistics and network science to investi-
gate the structure of relationships in multivariate data [29, 38]. Then,
each model offers distinct methodologies for analyzing the data, which
can lead to different interpretations and insights regarding the derived
associations among the variables [37].

The most popular strategy of network modeling takes advantage of
conditional associations to describe the network structure among a set
of variables. A conditional association between two variables is estab-
lished when these variables demonstrate probabilistic dependence, con-
ditioned on all other examined variables within the dataset. Choosing
the most appropriate model for estimating conditional association de-
pends on the structure of the data, aiming to accurately capture the
inter-dependencies across all variables.

1.3.1. STATIC CROSS-SECTIONAL MODELS
Cross-sectional network models play a vital role in mapping the relation-
ships between psychopathology-related variables at a specific point in
time (not necessarily the same time point for each individual) across in-
dividuals [2, 33]. More specifically, cross-sectional models analyze data
collected at a single point in time by a large number of individuals. The
associations between variables are driven by individual differences, pro-
viding a snapshot of their relationships. These models are useful for
understanding the structure of variable relationships in a population at a
specific time-point, which can help in identifying core variables or mech-
anisms that may be driving a disorder. Subsequently, potential central
variables or states could be treated as targets for improved therapeutic
interventions. Among many studies targeting specific mental disorders,
some great examples of cross-sectional network studies can be found in
[39, 40].

To construct these cross-sectional network models, the primary goal
of network estimation is to uncover the relationships between variables,
focusing on the strength and direction of the edges connecting them.
These edges represent the associations between variables, and estimat-
ing them accurately is critical for understanding the structure of the net-
work. Techniques such as partial correlation or regularized regression
are commonly used to determine these connections, helping to define
the edges between nodes [41, 42].

However, the use of cross-sectional models in psychopathology presents
several significant challenges. First, it should be noted that the derived
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network topologies describe differences between individuals, assuming
that all individuals are homogeneous [37]. Such an assumption is not al-
ways true, leading to generalized effects that may not reflect the actual
mechanisms that could characterize the diversity of individuals within
the dataset. Second, analyzing cross-sectional networks at a single
specific time-point yields static structures that do not capture the evolv-
ing nature of psychological phenomena [19]. This static representation
shows a significant limitation, as it fails to reflect the continuous and
dynamic changes in an individual’s psychological state over time. Uti-
lizing such static data is connected to some further concerns regarding
network stability and replicability [2, 43, 44].

To better understand the evolving patterns at play within individu-
als, methodologies should go beyond cross-sectional analysis including
temporal (or longitudinal) modeling approaches using time-series data.
These methodologies allow capturing intra-individual measurements
over time, providing a more detailed picture of mental health by adding
the temporal dimension within individuals.

1.3.2. TEMPORAL MODELS

In response to the challenges posed by individual heterogeneity and the
static nature of the widely used cross-sectional network models, there
has been a growing interest in the development of temporal network
models [2, 33, 45]. These models can handle time, as an additional di-
mension of the data, allowing for a dynamic analysis and understand-
ing of mental health disorders. By incorporating temporal dynamics,
these can capture the evolution of individual psychopathology-related
variables as well as their inter-relations over time. Accounting for indi-
vidual heterogeneity, these models focus on each individual separately,
tailoring network structure to the unique dynamics of each one [46]. To
apply such temporal network models, intensive time-series data is nec-
essary. These studies involve monitoring the same individuals over an
extended period, which facilitates observing changes and trends regard-
ing various factors as they naturally occur.

1.4. CAPTURING MENTAL DISORDERS
Having discussed the conceptual challenges of understanding mental
disorders, another critical issue lies in how these disorders are captured
and measured. The methods used to collect data in the field of mental
health are crucial, as they shape our understanding of mental disorders
and inform clinical decisions. While retrospective methods have been
widely used, they come with several limitations [47].
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1.4.1. TRADITIONAL RETROSPECTIVE METHODS FOR CAPTURING
MENTAL DISORDERS

Traditionally, studying the phenomena of mental disorders has been
based on data collected through retrospective interviews during health
assessment sessions [47, 48]. In this approach, individuals are asked by
clinicians to recall and report their experiences and symptoms over a pe-
riod of time, typically ranging from a few weeks to a few months. Based
on this knowledge, clinicians make decisions regarding diagnosis and
treatment [21]. However, this method of data measurement involves
several limitations [47–49]:

• Individuals may not accurately recall past events and symptoms,
or they may only partially recall them, ignoring useful information,
leading to incomplete or biased data.

• Based on the retrospective nature of assessments, data is captured
at discrete time points, missing the continuous and dynamic infor-
mation regarding the progression of mental health symptoms.

• While clinical assessments often ask individuals to reflect on their
everyday experiences, the data collected in these settings may not
accurately capture the complexity or variability of those experi-
ences as they occur in real-time. The clinical environment com-
bined with reliance on retrospective recall can limit the real-world
applicability and accuracy of the findings.

Such limitations of traditional retrospective assessments play an im-
portant role in poor treatment results and high relapse rates [14]. Con-
sequently, there is an urgent need for more accurate, dynamic, and
context-sensitive approaches to measuring mental disorders.

1.4.2. ECOLOGICAL MOMENTARY ASSESSMENT FOR CAPTURING
MENTAL DISORDERS

To address the significant challenges inherent in the study and treat-
ment of mental disorders, research in the field of psychopathology shifts
to more innovative methodologies for collecting data, aiming to uncover
the underlying nature of mental disorders. One of the most promising
methodological advancements for capturing mental disorders is through
Ecological Momentary Assessment (EMA) studies [50, 51]. EMA is also
known as "Experience Sampling Methods (ESM)" [52], "Ambulatory As-
sessment (AA)" [53] or "Intensive-longitudinal Study Design" [54]. All
refer to a research tool that allows us to collect repeated measurements
on various psychopathology-related variables, such as individuals’ symp-
toms, behaviors, and experiences in their natural environments. Accord-
ing to the EMA protocol for data collection, participants respond to digital
questionnaires on their personal devices (such as smartphones), where
they rate the perceived intensity of different psychopathology-related
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questions (EMA items or variables) along with contextual information
(such as their geo-location, activity and company). An example of such
a questionnaire, repeated over time, is presented in Figure 1.3.

I feel sad

11.00

I am tired

I am nervous

I feel relaxed

I am tired

I feel sad

09.00

I am nervous

I feel relaxed

I feel sad

13.00

I am tired

I am nervous

I feel relaxed

I feel sad

15.00

I am tired

I am nervous

I feel relaxed

Figure 1.3: EMA data collection through digital questionnaires, captured
multiple times a day to provide real-time insights.

Understanding the potential of EMA requires breaking down its three
core components: ecological, momentary, and assessment.

• The term "ecological" refers to the context of collecting data on
individuals in their natural environment. Unlike traditional meth-
ods that gather information in clinical settings, EMA captures data
in real-world conditions where individuals actually live and interact
daily. By this, the negative effects of retrospective measurements
regarding recall bias [55] are prevented, ensuring that the data re-
flects real-time experiences. This makes the findings more relevant
and applicable to real-life scenarios.

• "Momentary" emphasizes the importance of capturing data at spe-
cific moments in time as they are collected almost in real-time [56].
Particularly, prompts are sent to individuals’ smartphones at regu-
lar, but randomized, intervals of 1-2h. Also, these measurements
are typically taken multiple times each day (e.g., approximately 8
times) over several days, weeks, or even months. The collection of
repeated measurements leads to a temporal (time-series) dataset
of a frequency of every 1-2h, for each individual.

• "Assessment" refers to the structured and systematic process of
measuring relevant psychological and behavioral variables over
time. Through brief and minimally intrusive digital questionnaires
delivered at regular intervals, EMA allows for a rich, fine-grained
collection of psychopathology-related information.

EMA data is organized into 3 granularity levels, the variable-, temporal-
and individual-level, as depicted in Figure 1.4. These are described as
follows:
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• Multi-dimensional (or multivariate) data: On each measurement
moment, questions are asked about various psychopathology-
related behaviors, experiences, and symptoms. These represent
the variables of the EMA dataset, leading to a multivariate dataset.

• Time-series data: Collecting repeated measurements over time (fre-
quency of every 1-2h) leads to a temporal (time-series) dataset for
each individual.

• Across-individuals data: During an EMA study, data from multiple
individuals are collected, all represented by the same set of vari-
ables.

...

Individual 1

Individual N

V1

V2

V

V1

V2

V

t1 t2 t
Days

Days

Figure 1.4: EMA data structure, organized in 3 granularity levels - vari-
ables (EMA items), time-points and individuals - capturing the
multivariate, temporal and personalized nature of the data.

Therefore, EMA data with these characteristics is structured as a Mul-
tivariate Time-series (MTS). The multi-level structure of EMA provides a
significant amount of information to better understand mental disorders.

1.5. TEMPORAL NETWORKS FOR MODELING EMA
The next steps of methodological research in the field of EMA are directed
at developing statistical techniques capable of identifying potential net-
work structures among psychopathology-related variables derived from
empirically collected EMA data.
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After collecting EMA time-series data, it can be easily utilized in tempo-
ral network models to capture the relations between psychopathology-
related variables over time. This approach provides a more granular
view of how psychopathology-related variables evolve and interact, offer-
ing great insights into understanding the day-to-day dynamics of mental
disorders and developing more accurate interventions. Further details
about the most popular temporal network models, such as the Vector
Autoregressive (VAR) model, are given in Chapter 2.

One of the major strengths of network models is their interpretability.
By representing the inter-relations between variables as edges in a net-
work, they can be easily visualized. An example of such a network is
shown in Figure 1.5. Consequently, understanding complex interactions
becomes quite straightforward. Particularly, each edge in the network
reflects the association’s strength and direction of one node (variable) to
another. For example, the directed edge e12 represents the strength of
the association from node V1 to V2, which differs from the edge e21 in
the opposite direction. Quantitatively, this association is represented by
a numerical value, indicating that changes in one variable are assumed
to directly and proportionally predict changes in another. Therefore, net-
work models rely on linear assumptions about the data. Linearity facili-
tates mathematically approaching EMA data, making them computation-
ally feasible and often easier to implement. Nevertheless, these linear
network models may be insufficient to uncover the possible complicated
interactions and describe the real complex nature of mental disorders
[57]. Consequently, there has been an urgent need to develop more ad-
vanced statistical methods to model the underlying complex psychologi-
cal mechanisms [57]. These new methods aim to provide deeper insights
into the patterns and complex interplay of psychopathology-related vari-
ables of mental disorders.

1.6. MACHINE LEARNING FOR MODELING EMA
Despite the paradigm shift to temporal network models for psychopathol-
ogy, to achieve better insight into mental disorders, the development of
robust and accurate models remains essential [58–61]. In this context,
robust models refer to reliable models that are resilient to variations in
data, while accurate models are those capable of correctly predicting
an outcome by capturing complex patterns and relationships within the
data. Exploiting the rich EMA data structure and information can be valu-
able for building accurate personalized predictive models, but also for
capturing the intricate interplay between psychopathology-related vari-
ables. These models aim to provide a comprehensive understanding of
how variables influence one another over time, offering further insights
beyond individual predictions. By focusing on different tasks, such as
predicting a future event or the progression of individual symptomatol-
ogy (course of mental disorder), models’ accuracy and robustness can
serve as an indicator of performance, ultimately assessing the represen-
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V1

V2

V3

V5

V4

e12 e21

e24

Figure 1.5: A directed network where EMA variables (V1 − V5) are rep-
resented by nodes and connections by edges. The edges
represent direct relationships from one node to another, for
example, e12 indicates an effect from V1 to V2, while e21
from V2 to V1.

tations of variables’ interactions derived from these models [62–65].
A promising direction to discover complex and higher-order interac-

tions between EMA variables is using non-linear machine learning (ML)
models [58–61, 66]. ML models can enhance the ability to accurately
predict the occurrence of different psychopathology-related variables by
recognizing complicated patterns or relations between them in existing
data. The necessity of using ML models becomes more evident when
dealing with a large number of variables, as richer information can lead
to a more complex system that is unlikely to be represented by sim-
ple linear patterns [66]. These advanced data-driven approaches are,
also, not dependent on any formal assumptions regarding the structure
of the data, unlike linear statistical models, which often require specific
assumptions such as linearity, stationarity or normality (later discussed
in Chapter 2.3.1). This flexibility allows data-driven methods to capture
complex, non-linear relationships and interactions within the data that
linear models might not reveal.

1.6.1. IDIOGRAPHIC AND NOMOTHETIC APPROACHES
The idiographic (also called personalized or individual) predictive ap-
proach is often the first method applied to a dataset, focusing on the
unique data of each individual [36, 67, 68]. Given that there is large inter-
individual heterogeneity in mental disorders, ideally separate predictive
models are built for each individual. However, a significant challenge in
building personalized models is the limited number of data points avail-
able per variable for each individual. Data collection in EMA studies is
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often limited because these studies typically do not run for extended
periods of time to avoid overburdening participants [69]. These small
datasets potentially lead to training overfitted models without being ca-
pable of generalizing, or even to situations where models cannot be
trained at all [45]. The latter scenario is particularly common in highly
imbalanced datasets, where one of the outcomes may not be sufficiently
represented in the whole dataset or when splitting it into training or test
personalized datasets [70].

Moreover, inspired by the traditionally applied cross-sectional studies,
research often extends the idiographic models to nomothetic (group-
level) predictive methods. Specifically, information collected from other
individuals in the same EMA study can prove beneficial for modeling [45].
Identifying common patterns and generalized trends within larger popu-
lations can provide broader insights to generally understand mental dis-
orders. The most common way of integrating data of more than one in-
dividual in a model is to concatenate the data of all individuals together
in a single dataset. The augmented dataset is then used to construct a
group-level model.

Such models produce generalizable predictions that can be relevant to
a wider range of individuals, beyond those included in the training sam-
ple. For example, a group-level model can be applied to new individuals
who were not part of the training set and may even belong to different
populations. An additional benefit is that it can be applied to individuals
with limited data, where personalized modeling is not feasible due to an
insufficient number of training points or imbalanced datasets. By captur-
ing patterns that generalize across individuals, these models provide a
flexible and alternative solution.

1.6.2. CLUSTER-BASED APPROACHES
Utilizing data from multiple individuals can significantly enhance the gen-
eralizability of a model, allowing for broader applications across the pop-
ulation (referring to individuals of the same data collection). However,
this approach has its own challenges, especially when there is a large
heterogeneity among the individuals whose data is included. Large vari-
ability, while valuable for capturing a broad range of experiences, can
weaken the model’s accuracy, making it less effective for a specific group
or individual.

In a way to further refine the nomothetic approaches, advanced
cluster-based approaches could split the population into more homo-
geneous subgroups. These clusters can be formed based on identifying
individuals with various similar characteristics, such as demographic
factors, symptom profiles, etc. [71]. Exploring various characteristics
and clustering methods is essential for enhancing the models’ utility
and efficacy. This exploration enables the development of models that
not only maintain generalizability across the population but also offer
more precise insights and solutions compared to traditional nomothetic



1

14 1. Introduction

approaches that use all data collectively.
By effectively grouping similar individuals, more sophisticated cluster-

based models can bridge the gap between capturing the diversity of
entire populations and recognizing the unique needs of individual sub-
groups. This approach enables a deeper, more practical application of
psychological research, aligning broad data collection with focused, ef-
fective solutions.

1.7. RESEARCH STATEMENT AND QUESTIONS
This dissertation focuses on applying advanced data analysis techniques
for several tasks. More specifically, there are two main directions of anal-
ysis: (1) application of advanced non-linear methods and (2) exploiting
the nomothetic predictive approach. Five research questions are exam-
ined:

• Research Question 1 (RQ1): Are non-linear individual models ca-
pable of outperforming the linear network models?

Traditional temporal network models have been widely used due to
their simplicity and interpretability. These models typically assume
linear relationships among variables, making them straightforward
to apply and analyze. However, mental disorders are considered
complex systems of dynamically interacting variables. Thus, EMA
data in psychopathology is expected to exhibit complex, non-linear
relationships that network models may not capture effectively. Non-
linear machine learning models, such as tree- or boosting-based
algorithms [72], offer promising alternatives [61, 66]. In partic-
ular, these models have the potential to better capture the data
patterns as well as interactions between psychopathology-related
variables. However, according to the literature, their application
to EMA data is limited. Given this gap, this dissertation aims to
explore various non-linear methods that still preserve the aspect
of explainability, a crucial factor for understanding the model’s
decision-making process, especially when the model is not as trans-
parent or interpretable as linear models. This investigation will
focus on assessing whether these advanced non-linear models can
outperform traditional temporal network models in predicting future
psychopathology-related variables as an outcome.

• Research Question 2 (RQ2): Could nomothetic modeling approach-
es, by integrating more data, exceed the predictive performance of
individual models?

According to the nomothetic predictive approach, information from
multiple individuals can be utilized in the modeling process, by inte-
grating data from a larger number of individuals. This raises the
question of how to effectively incorporate such information into
modeling to enhance individual performance. Initial nomothetic
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approaches utilize all available data (using-all-data or aggregated
models), which can provide a baseline model with a potentially im-
proved predictive accuracy due to increased data volume. Never-
theless, to further optimize the integration of additional information,
more sophisticated methodologies need to be employed. Specifi-
cally, clustering techniques that group individuals based on similar
characteristics can be proven more effective. By identifying and
grouping similar individuals, models can be tailored to these specific
subgroups, thereby training them on more homogeneously relevant
data. This cluster-based approach enhances the predictive perfor-
mance of the models, but also retains a level of personalization.

• Research Question 3 (RQ3): How could nomothetic modeling ap-
proaches effectively integrate group-based information while main-
taining the focus on individual data?

Although nomothetic and cluster-based models offer advanced op-
portunities compared to only using individual data, in most cases,
the utilized knowledge is too broad and potentially does not reflect
every individual separately. This brings up the question of how to
balance a focus on the individual with useful group-based informa-
tion. Individual focus can derive from several aspects of knowledge
learned during the training process. Specifically, this involves re-
fining algorithms that can dynamically adjust to the unique infor-
mation of an individual while utilizing the predictive power provided
by a broader group. Borrowing approaches from the field of ad-
vanced machine learning, such as transfer learning [73] and knowl-
edge distillation [74], different methodologies are investigated and
employed to enhance the predictive performance of individual mod-
els. Such methodologies have the potential to balance the benefits
of both individual and nomothetic models.

• Research Question 4 (RQ4): What individual characteristics ex-
tracted from time-series can be used to effectively group individuals
into homogeneous clusters?

While cluster-based modeling can provide a way of integrating in-
dividual and nomothetic models, it is essential to utilize effective
and homogeneous clustering-uncovered groups of individuals. Par-
ticularly, a crucial step in this process is determining what charac-
teristics (types of information) from each individual can be used to
accurately cluster multivariate time-series (MTS) data. The most
straightforward clustering approaches use raw time-series data and
explore the most suitable time-based similarity measures for com-
paring time-series. Beyond raw data, given the complexity and high
dimensionality of EMA data, clustering could be based on several
types of representational information. For example, model-derived
information, such as model’s coefficients, could be also utilized, re-
flecting another promising clustering category, that is model-based
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clustering [75]. The investigation should identify such key individual
characteristics that can influence the clustering process to achieve
meaningful insights about individual grouping and similar EMA pat-
terns.

• Research Question 5 (RQ5): How can we evaluate the time-
series clustering results derived from different unsupervised clus-
tering algorithms?

Various clustering approaches can be employed in a group-based
predictive approach. However, clustering is an unsupervised prob-
lem and the true underlying groups are not commonly known. Be-
cause of the unsupervised nature of the problem and the large num-
ber of possible clustering parameters, it is quite difficult to evaluate
the produced results. Each method, according to its objective func-
tion and parameters, aims to separate data in the most appropriate
way, every time leading to a different group separation. Thus, all
clustering-related choices demand ways to examine and validate
possible EMA clustering approaches for different scenarios. Beyond
methodologies relying only on internal evaluation measures, expla-
nations are further provided to examine the effectiveness of the
derived groups of individuals.

1.8. THESIS OVERVIEW
This dissertation is organized into 8 chapters. Starting from the current
chapter of the Introduction, the foundation of the current research field
is provided, where motivation and context are discussed. The rest of the
chapters focus on describing the data analysis pathway, ranging from
idiographic and nomothetic to group-based predictive approaches. More
specifically, the rest of the chapters are structured as follows:

• Chapter 2 provides the methodological background on the typical
modeling approaches applied to EMA data. Starting from the widely
used linear models, such as Vector Autoregressive (VAR) models,
this chapter leads to more advanced interpretable models and their
adaptation for EMA data. Moreover, it introduces the EMA datasets
analyzed in this work, along with the specific model output and pre-
diction tasks that are examined.

• Chapter 3 goes a bit further from the traditional linear models.
This chapter explores the trade-off between linear and non-linear
models by trying to integrate the strengths of both worlds (i.e. ac-
curacy and interpretability). First, according to RQ1, it focuses on
using non-linear interpretable ML models in the context of individual
classification problems. ML models can enhance the ability to accu-
rately predict the occurrence of different psychopathology-related
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variables by recognizing complicated patterns in the data. Sec-
ond, apart from individual approaches, this chapter partially con-
tributes to RQ2 and RQ3 by investigating two different nomothetic
approaches to integrate data of more than one individual, one us-
ing all data directly during training and one based on more sophisti-
cated approaches, such as knowledge distillation. To evaluate both
questions, the performance of various ensembles of trees is com-
pared to linear models using imbalanced synthetic and real-world
datasets.

• Chapter 4 utilizes ML to identify similar patterns in EMA data across
different individuals through clustering. This approach aims to re-
fine the previously examined nomothetic methods by incorporating
clustering results into group-based strategies to address RQ2 and
enhance personalized performance. Particularly, it focuses on clus-
tering EMA data of individuals based on the raw MTS data, thereby
also contributing to RQ4. Since clustering is an unsupervised prob-
lem, it is challenging to assess whether the resulting grouping is
successful. Therefore, various clustering methods are assessed us-
ing simulated data designed to resemble EMA patterns as well as
a real-world dataset collected as part of our project, NSMD [36].
Additionally, several internal evaluation measures, such as the Sil-
houette coefficient, are examined, contributing to RQ5.

• Chapter 5 continues the clustering exploration using a different
EMA data representation, such as model-based information. In an
attempt to additionally address RQ4, two different model-based
clustering approaches are examined. The first clustering method
is based on model-extracted parameters of individual models,
whereas the second is optimized on the model-based forecasting
performance. Similar to Chapter 4, it also contributes to addressing
the challenges of clustering evaluation of RQ5. Both methods are
analyzed using intrinsic clustering evaluation measures (e.g. Sil-
houette coefficients) as well as the performance of a downstream
forecasting scheme, where each forecasting group model is devoted
to describing all individuals belonging to one cluster.

• Chapter 6 extends the work on clustering evaluation, essentially
targeting RQ5. Apart from the previously investigated structure and
quality of the clustering-derived results, another important aspect
of evaluation is clustering explainability. In particular, this chapter
proposes an attention-based interpretable framework to identify the
important time-points and variables that play primary roles in dis-
tinguishing between clusters. A key part of this study is to examine
ways to analyze, summarize, and interpret the attention weights as
well as evaluate the patterns underlying the important segments of
the data that differentiate across clusters.

• Chapter 7 further explores more advanced modeling strategies
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with the goal of not only taking advantage of group-based approach-
es but also prioritizing individual-level information. This contributes
to addressing part of RQ3. More specifically, transfer learning ap-
proaches are applied to improve predictions for a specific individ-
ual (target domain) by incorporating data from similar individuals
(source domain). This chapter focuses on boosting-based method-
ologies, which are adapted to EMA data and methodologically en-
hanced regarding their modeling process. To evaluate the effective-
ness of all the proposed enhancements, such as the optimal selec-
tion of similar source domains and their weighting strategies, their
impact on performance is mainly investigated.

• Chapter 8 summarizes the proposed modeling-specific enhance-
ments and discusses to what extent these significantly contribute
to a better understanding of mental disorders. In particular, it con-
siders how each research question is addressed and the impact on
the field. Moving forward, it provides several future directions for
analyzing EMA MTS data.

A summary of all main chapters (3-7) is presented in Table 1.1. This in-
cludes a more structured format of associating the main building blocks,
that is chapters and research questions along with their interconnections.
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Table 1.1: Summary of the main chapters (3-7) in the dissertation, pro-
viding their interconnections and the links to the research
questions (RQs)

Chapter Connection to other Chapters and RQs

3

• Extends linear models (presented in Chapter
2) by exploring non-linear personalized mod-
els (RQ1).

• Investigates the modeling concept of nomo-
thetic approaches (introduced in Chapter 1)
by applying more advanced methodologies in-
cluding more individuals (RQ2).

• Explores a more sophisticated way to balance
idiographic and nomothetic approaches, using
a 2-step knowledge distillation method (RQ3).

4

• Refines the nomothetic approaches (investi-
gated in Chapter 3) by using cluster-based
methods (RQ2).

• Explores clustering based on time-series EMA
data (RQ4).

• Assesses clustering through internal cluster
evaluation (RQ5).

5

• Extends clustering exploration (presented in
Chapter 4) based on model-based information
(RQ4).

• Evaluates model-based clustering through
performance (RQ5).

6
• Extends clustering evaluation (presented in

Chapter 4 and Chapter 5) by exploring clus-
tering explanations (RQ5).

7

• Balances the advanced group-based modeling
strategies (proposed in Chapters 4 and 5) with
individual-level data (RQ3).

• Explores the concept of boosting-based trans-
fer learning.
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METHODOLOGICAL

BACKGROUND: FROM THE
LINEAR NETWORK APPROACH

TO NON-LINEAR MODELING

2.1. INTRODUCTION
In the last decade, the collection of time-intensive, repeated, intra-
individual measurements in psychology has grown, sparked by recent
technological and methodological developments [33, 45, 51, 76]. This
method is called Ecological Momentary Assessment (EMA). This chapter
starts by describing the EMA data and their special time-series charac-
teristics. Subsequently, a literature overview outlines the challenges of
typical modeling approaches applied to EMA data. This discussion then
leads to the introduction of more advanced and interpretable models
[62].

2.2. EMA DATA
EMA data is organized into three levels of granularity: individuals,
variables, and time-points. More specifically, in EMA, participants are
prompted several times a day to answer questions on their smart-
phones, during a certain time period, which typically ranges between
2-4 weeks. Depending on the topic of the study, questions may probe
for participants’ mood states, craving for food, social circumstances, etc.

In practice, an EMA dataset consists of N independent and identically
distributed (i.i.d.) individuals, each represented by a multivariate time-
series (MTS). The dataset can be defined as X = 1, ..., N. Then, each
MTS  ( = 1, ..., N) of the -th individual consists of a sequence of V
( = 1, ..., V) univariate time-series (UTS), where each one has a same-
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length size T (t = 1, ..., T). A UTS represents each of the EMA items. An
EMA item captures the responses or ratings (on a Likert or a visual ana-
logue scale (VAS), see [77]) over time of each individual on a question.
In general, the items asked in an EMA questionnaire, include individuals’
daily-life experiences and emotions along with context information. To
account for inter-individual differences in responses, regarding the per-
ceived rating scales, data are typically normalized or scaled per person,
leading to data that is often treated as continuous. Hence, a complete
EMA dataset X is an N–dimensional MTS of V variables with a varying
length of time-points T, as algebraically represented in Equation 2.1.

X = 1,1..V,1..T1 , 2,1..V,1..T2 , .., N,1..V,1..TN (2.1)
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Figure 2.1: An example of EMA MTS data of 2 individuals, each measured
across three variables over time.

2.2.1. EMA CHARACTERISTICS
EMA data have several characteristics that need to be considered in anal-
yses. The following section introduces these characteristics along with
potential solutions to address each challenge effectively.

MISSING MEASUREMENTS

First, some measurements can be missing for several reasons, mostly
because of a technical problem or because a participant was not able
to respond to an EMA prompt. This leads to datasets with incomplete
time-series, meaning that some MTS have less than the maximum length
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of T time points. Differences in the number of missing values among
individuals make the MTS to be of variant length (where potentially T1 ̸=
T2 ̸= TN), as observed in Figure 2.1). Missing points also affect the time
intervals between two consecutive measurements. When missing points
exist, data are characterized as irregularly spaced MTS. An example of
an incomplete individual time-series of a variable (or feature) is given
in Figure 2.2, where gaps are apparent throughout time due to missing
values.
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Time-series of a variable with missing values

Figure 2.2: An example of a time-series variable with random missing
values.

There are various strategies to handle such incomplete data [78]. First,
all missing values can be omitted from the original dataset [79]. How-
ever, this approach seems valid only when data is missing completely
at random (MCAR). Another common approach is to apply an imputation
method to the data, which assumes that the data is either missing at ran-
dom (MAR) or, in some cases, missing not at random (MNAR), depending
on the chosen imputation technique [80]. During preprocessing, meth-
ods based on smoothing or interpolation, but also on machine learning
(ML) algorithms are widely applied. These methods are needed to fill the
gaps in data based on already existing patterns.

Beyond omission and imputation strategies, there are still ways to pro-
cess data with missing values without relying on possibly biased tech-
niques. A widely proposed approach is to apply a kernel to the raw data
[81]. Kernel methods have dominated ML because of their effectiveness
in dealing with a variety of learning problems [79]. To tackle these prob-
lems, a kernel works by mapping data into a higher-dimensional feature
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space, called a reproducing kernel Hilbert space (RKHS) [82]. An RKHS
is a nonlinear transformation that enables the smoothing or reshaping of
data, effectively re-describing it such that (linear) separation becomes
easier. The success of kernel methods relies on the fact that nonlinear
data structures, like high dimensional MTS, can be transformed based on
the type of kernel to a space where they are finally linearly separable.

VARIABILITY IN MEASUREMENTS SCALE
Apart from length invariances, resulting from missing values, EMA time-
series data can also exhibit different characteristics in terms of measure-
ment scale [83]. Regarding scaling, although EMA responses are usually
recorded on a Likert (with 5 or 7 categories) or VAS scale, the range
of given responses may differ per participant. For example, some indi-
viduals may tend to be biased towards the middle values, avoiding all
the extreme scores, whereas others may do the opposite, resulting in a
higher skewness in the data of some items, like negative emotions.

TIMING SHIFTS IN MEASUREMENTS
Additionally, different individuals’ time-series can exhibit variations in
timing, known as shift invariances [84]. A time-series represents the
evolution of an individual’s emotion, behavior or other variable. Thus,
among different individuals, similar patterns of behavior can be seen,
but shifted in time. For example, two individuals should be considered
similar when they both show a similar pattern, e.g. a stable and then
an increasing trend, even if the timing of the transition differs, with one
individual transitioning quicker than the other. In a multivariate setting,
similarities between all variables are considered, taking into account the
relationships between multiple variables across time. When it is neces-
sary to compare the shifted patterns across individuals, such as in clus-
tering, an appropriate alignment method should be applied. For instance,
alignment issues can be taken into account by an appropriate distance
measure such as Dynamic Time Warping (DTW) [85]. Such measures will
be further discussed in Section 4.3.1.

2.3. OVERVIEW OF TEMPORAL NETWORK MODELS
The network approach to psychopathology has gained momentum over
the past decade [26, 86]. According to this approach, mental disorders
can be represented by a network of interconnected psychopathology-
related variables. Within this framework, all variables are represented
as nodes, while the connections (edges) between them indicate their
interrelations (or interactions) and mutual influences. Figure 2.3 shows
an example of a directed network among the EMA variables.

One of the key aspects of the network approach lies in its straightfor-
ward visualization, representing the complex interplay between relevant
variables. Its visualization enhances the simplicity and interpretability of
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Figure 2.3: A directed network where EMA variables (V1 − V5) are rep-
resented by nodes and connections by edges. The directed
edges (arrows) indicate the directional relationships between
variables. For example, an arrow from V1 to V2 represents a
direct effect or influence of V1 on V2.

the model. However, the effectiveness of the network approach relies
heavily on accurately discovering the interconnections between these
variables [87]. Thus, robust statistical methods are necessary to identify
reliable connections.

Time-series statistical modeling is crucial for analyzing EMA data,
which captures temporal sequences of psychopathology-related vari-
ables, such as symptoms, behaviors and experiences. The most popular
class of time-series statistical modeling is linear Autoregressive (AR)
models [88]. AR models predict the value of a variable at a specific time-
point taking into account its values at previous time-points. The number
of previous steps the model takes into account refers to the number of
lags in an AR model. For instance, when considering only one step back,
it is referred to as a 1-lag AR model.

However, in the case of EMA, where multiple variables are involved, AR
models should be expanded to handle multivariate time-series data. The
most commonly applied model to EMA data is the Vector Autoregressive
(VAR) model [57]. Similar to AR, VAR models predict the variance of a
variable at a specific time-point considering both its past values (self-
loops or autoregressive effects) as well as the past values of the other
variables (cross-lagged effects). Consequently, VAR models provide a de-
tailed understanding of how psychopathology-related (or EMA) variables
evolve and influence each other over time.

The 1-lag VAR model is described in Equation 2.2. In particular, in VAR,
each variable  of individual  at time-point t, ,,t, is modeled as a lin-
ear combination of all the other variables j at time point t − 1 added to
a constant term ε, representing both the intercept and error. The pa-
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rameters (or coefficients) j, of the model play a key role because they
quantify the linear dependency between the variables j and the output .
Therefore, the VAR-extracted coefficient reflects a linear relationship, as
illustrated in Figure 2.4a, and effectively corresponds to an edge in the
network, as depicted in Figure 2.4b. Thus, linearity simplifies the estima-
tion of the model and the interpretation of the underlying phenomena.

,1,t =
V
∑

j

j,1 · ,j,t−1 + ε1

,2,t =
V
∑

j

j,2 · ,j,t−1 + ε2

..

,V,t =
V
∑

j

j,V · ,j,t−1 + εV (2.2)

2.3.1. CHALLENGES IN APPLYING VAR
Despite the widespread application of the VAR model to the theory of
psychopathology, several assumptions inherent to the model are often
violated in the context of collected EMA data. These violations present
significant challenges that need to be taken into account, as outlined
below and elaborated in [89, 90]:

• A crucial assumption of the VAR models is data stationarity, mean-
ing that the statistical properties (e.g., mean values) of each vari-
able are not expected to change over time. This assumption is
necessary so that the model-derived coefficients are consistent
throughout the entire time series. Nevertheless, given the com-
plexity of mental disorders, the dynamics of EMA data are rarely
constant. Consequently, when VAR is applied to EMA data, the
identified relationships are likely ancestral relations (historical as-
sociations that persist over time) rather than direct causal inter-
actions. This means that the model primarily captures long-term
associations rather than immediate, direct interactions. Addition-
ally, the presence of confounding factors (unmeasured variables)
can further obscure these interactions, making it difficult to disen-
tangle the underlying dynamics of the disorder [91].

• Another key assumption of VAR models is that the relationship be-
tween the variables is linear, meaning that changes in one variable
result in linearly proportional changes in the output variable. De-
spite the given interpretation, in the case of real-world data, it is
more realistic that EMA data exhibits non-linear relationships.
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Figure 2.4: (a) Linear relationship of input ,1,t−1 (or V1) to output ,2,t
(or V2), representing 1,2 = 0.2. (b) The linear relationship is
reflected in the directed connection between V1 and V2.

• Although one of the advantages of the VAR-uncovered interactions
is its interpretability reflecting the dynamic influence among vari-
ables, the VAR model does not derive true causality. Instead, VAR
parameters show partial correlations which could only provide in-
dications or hypotheses about the causal pathways among vari-
ables. Often, Granger causality is applied within VAR frameworks
to infer directional dependencies [92]. However, Granger causality
only suggests temporal precedence rather than actual causation, as
these relationships are derived from observational data without ex-
perimental manipulation [93]. According to simulation studies [94,
95], VAR coefficients do not always reliably represent the underlying
causal interactions.

• The estimation of the VAR parameters (coefficients) can be chal-
lenging, especially with high-dimensional data. When many vari-
ables are involved, the need for more data points increases to
achieve sufficient statistical power. In such cases, techniques
such as regularization, feature selection or dimensionality reduc-
tion should be employed [96].

• EMA data is expected to be equidistant, meaning the time interval
between two consecutive measurements is almost equal. However,
due to missingness in the data, this assumption is commonly vio-
lated.

To overcome these assumptions, a number of VAR extension models,
such as mixed VAR [97], multi-level VAR [98], time-varying VAR [99],
and VAR with Bayesian Dynamic Modeling [100] have been considered
promising analysis methods. However, it seems unrealistic for linear
models to uncover all possible complex interactions between variables
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that are relevant to mental disorders. Exploring the application of more
advanced ML models might be beneficial for the modeling of EMA.

2.4. ADVANCED NON-LINEAR INTERPRETABLE MODELS
Interpretable machine learning is an emerging research area focused on
developing algorithms that can provide clear explanations for their pre-
dictions [101]. While accuracy is a necessary prerequisite of any ML
algorithm, interpretability is another property that is important for a suc-
cessful predictive model. However, most ML models are considered com-
plicated black boxes, producing predictions without the whole decision-
making process being transparent. Especially in case of critical and high-
risk applications, it is important to understand how these decisions are
made.

A first step towards interpretability is to know how much each variable
(or feature) contributes to the output prediction. A clear example of a
model providing such information is the linear regression model. In linear
models, the prediction’s outcome is modeled as a weighted sum of the
existing features, with each weight indicating the feature’s contribution.

Building on this, a natural extension of linear models is the more flexi-
ble Generalized Additive Models (GAMs) [102–104]. The main concept of
GAMs remains the same as of the linear ones, expecting for the outcome
to be an additive model of feature effects, but relaxing the restriction
of the linear relationship. It allows the use of arbitrary functions to rep-
resent the features’ effects. Mathematically, the relationship in a GAM
for an individual  = 1 is presented in Equation 2.3, where ƒj are the fea-
ture functions of a variable j and g is the link function (e.g., identity or
logistic).

g(1,,t) =
∑

j

ƒj(1,j,t−1) (2.3)

The ƒ functions can be based on regression spline models and tree-
based models such as single trees or ensembles of bagged trees,
boosted trees or combinations of boosted-bagged trees [104]. This
allows more flexible, non-linear feature functions to be incorporated.
An example of such a feature function is shown in Figure 2.5a. Similar
to the network models, such feature functions can reflect interrelations
between nodes, as illustrated in Figure 2.5b.

However, there is still a significant gap between the flexible GAMs and
full-complexity models, such as ensembles of trees, regarding accuracy
[104]. The main reason for this limitation is that GAMs take into ac-
count only univariate terms without considering any interaction (or inter-
relationship) between features. To deal with this drawback, a more ad-
vanced method was developed, called Generalized Additive Models plus
Interactions (GA2Ms), which additionally incorporates pairwise interac-
tions between features [105]. Similar to GAMs, this model describes any
variable 1,,t according to Equation 2.4 in the following form:
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Figure 2.5: (a) Non-linear relationship of input 1,1,t−1 (or V1) to output
1,2,t (or V2). (b) The non-linear relation is again reflected in
the directed connection between V1 and V2.

g(1,,t) =
∑

j

ƒj(1,j,t−1) +
∑

 ̸=j
ƒj(1,,t−1, 1,j,t−1) (2.4)

where ƒj is the function for feature interactions for all combinations of
variables ( and j). This model can still be interpretable, using heat maps
for representing the pairwise features’ interactions, as well as accurate,
reaching the performance of the state-of-the-art ML models. An example
of a pairwise features interaction is presented in Figure 2.6.
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Figure 2.6: Pairwise feature interaction between 1,1,t−1 and 1,2,t−1, col-
ored by the effect on the output g(1,2,t).
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This presents a heatmap of 2 dimensions, with each axis represent-
ing the values of a feature. The heatmap shows the scores g(1,2,t)
associated with a combination of feature values for features 1,1,t−1 and
1,2,t−1. Higher scores indicate a greater probability of predicting the
positive class (in the case of a binary classification setting) when those
specific combinations of feature values occur.

In this work, a fast implementation of the GA2Ms algorithm is used,
called Explainable Boosting Models (EBMs), which is part of Microsoft’s
open-source Python package, called InterpretML [106, 107]. The EBMs’
learning process makes use of the gradient boosting algorithm with shal-
low tree ensembles, as described in detail in Figure 2.7. At each boosting
round, a tree is built on a single feature and its residuals are used for
training the tree of the following feature. This is repeated for all different
features. After several boosting rounds, each feature’s trees of all rounds
can be combined, leading to tree ensembles as the final features’ rep-
resentation. Typically, the number of boosting rounds is initially set and
controlled by a predefined tolerance threshold. The additive property of
trees for each feature is illustrated in Figure 2.8. On top of this, functions
for pairwise features’ interactions can be additionally incorporated. The
FAST method is used to detect and rank features’ interactions, subse-
quently keeping the most significant ones [105]. This prevents an ex-
tensive checking of all possible combinations [105]. Similarly, the same
training process is performed for the specified pairs.

Round 1

Round 2

Round M

Feature 1 Feature 2 Feature V
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residuals

residuals

residuals

residuals
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Figure 2.7: The learning process of EBMs: Feature functions are itera-
tively updated at each boosting round to minimize the pre-
diction error (residuals).
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Figure 2.8: Interpretability of Feature 1 by summing the learned trees of
all M rounds.

2.5. OUTPUT TASKS
Up to this point, the focus was to approximate the network approach
using more advanced non-linear models, showing that more detailed and
accurate information can be derived regarding the underlying processes.
However, deciding on the type of model depends on the output task that
needs to be addressed.

In the network approach, the applied models have been mainly dis-
cussed in a multivariate regression setting. Nevertheless, advanced
models could be built targeting different output tasks. For instance, the
modeling approach varies depending on the type of output variable be-
ing targeted. Therefore, in this section, an overview of all the examined
output tasks is presented, each providing insights into different aspects
of mental disorders. The tasks are also summarized in Figure 2.9.
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Figure 2.9: Overview of the examined output tasks in relation to the input
(time-series or time-points).

2.5.1. 1-LAG BINARY CLASSIfiCATION FOR EVENTS PREDICTION
Classification models are developed to predict a particular categorical
outcome, such as an event or variable. In this context, the focus is on on
binary classification models predicting the occurrence or not of an event,
such as elevated negative emotions, within a given time frame (e.g., 1-
lag or next time-point). To create binary outputs from EMA variables, cut-
offs are applied to transform continuous or ordinal measurements into
binary indicators of event occurrence. These models use the previous
states of EMA variables to identify patterns and risk factors associated
with one step ahead of the future events (variables) of interest. When
many variables are involved, this is referred to as a 1-lag Multivariate
Binary Classification.

2.5.2. 1-LAG MULTIVARIATE FORECASTING
Multivariate regression models are developed to forecast the future val-
ues of multiple (or all) EMA variables, such as mood states (e.g., positive
and negative affect). In the case of 1-lag forecasting, the goal is to pre-
dict the values of the next time-point; however, these models can also
be extended to forecast multiple future time points if needed. This ap-
proach provides an overall forecast of an individual’s mental health sta-
tus, as represented by all measured variables. In case of a focused task,
this scenario can be simplified from multivariate to one EMA variable,
referred to as a 1-lag forecasting task.
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2.5.3. TIME-SERIES CLUSTERING
Given the high heterogeneity across individuals collected in an EMA
study, further analysis is necessary to uncover subgroups with homo-
geneous EMA patterns or profiles. In particular, EMA data can be used
to uncover patterns and similarities in their data, leading to meaningful
groups of similar individuals. To address the task of individual grouping,
clustering algorithms are applied to EMA data. Clustering is an unsu-
pervised method, meaning that there are no available labels (clusters)
to optimize the learning process. Instead, it only relies on similarities of
various characteristics extracted from individual time-series. Effective
clustering plays a significant role in understanding how similar patterns
form distinct EMA profiles, which can be useful for targeted interventions
and personalized treatment plans.

2.5.4. TIME-SERIES CLASSIfiCATION FOR CLUSTERING
EXPLANATIONS

Given that there is no definitive answer about the true clustering re-
sults, evaluating all possible groupings is infeasible due to the vast com-
putational complexity involved. Instead, smart algorithms have been
developed to identify high-quality clustering solutions. Besides some
evaluation measures examining the clustering quality, another approach
can be also given by using a prediction model to evaluate and explain
some "optimal" (meeting quality criteria) clustering results (cluster la-
bels). Specifically, classification models are used to classify individuals
into their respective cluster labels. In this case, classification models are
used in a different setting than the first one (1-lag Binary Classification),
where instead of inputting the EMA values of one time-point, the input
is the whole MTS. Therefore, appropriate classification models should be
selected that are capable of handling MTS data as input. Depending on
the number of clusters involved, this can be split into binary (2-cluster)
or multi-class (multi-cluster) MTS classification. Such models are used to
provide explanations about the common characteristics of each cluster,
that is the common features of individuals within each group.

2.6. DATASETS
In this section, the real-world EMA datasets that are explored in this the-
sis are presented. Because the availability of open-source datasets is
limited, additional synthetic data are generated and used for evaluation,
but these are described in the corresponding chapters regarding the tar-
geted task.

All real-world datasets’ parameters are briefly reported in Table 2.1 and
more extensively described as follows. Additionally, Figure 2.10 presents
an illustrative example of a single individual from each of the three ex-
amined datasets, showing the patterns of three distinct variables over
time. It is important to note that the individuals depicted are all different,
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with each participating in only one of the studies or datasets. Addition-
ally, while the variables are labeled similarly, they can differ between
datasets.
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Figure 2.10: A time-series example of the 3 examined datasets. Each
subplot corresponds to an individual (showing 3 variables)
of one of the datasets AlcoholDrink, ThinkSlim2 and NSMD.
The 3 variables differ between datasets.

2.6.1. ALCOHOLDRINK DATASET

The AlcoholDrink dataset is a real-world and open-source dataset, ob-
tained by a study described in [108]. It was a 2-week collection of
data from 33 individuals through mobile notifications. The captured vari-
ables included positive and negative emotions, drinking cravings and ex-
pectancies, perceived alcohol consumption, impulsivity, as well as social
context. All these variables were measured on a visual analogue scale
(VAS) from 0 to 100.

During data preparation, each participant’s EMA data was analyzed
separately. Each individual dataset was assessed for the frequency of
daily observations as well as the frequency and distribution of the out-
come events. First, individuals having very few observations per day or
in total were removed, with the threshold being set at 80% compliance.
The number of individuals retained was 26. For a more detailed explo-
ration of the data’s characteristics, additional figures can be found in the
supplementary material of this chapter, specifically in Figures 2.13 and
2.14.
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Table 2.1: Characteristics of the examined real-world datasets regarding
the number of individuals, features and time-points (mean and
standard deviation across all individuals) after the initial pre-
processing steps.

Dataset #Individuals #Features #Time-points

AlcoholDrink 26 15 92.0(48.1)
ThinkSlim2 65 37 119.3(54.5)
NSMD 187 12 167.1(27.4)

2.6.2. THINKSLIM2: HEALTHY/UNHEALTHY (HU) EATING DATASET

The ThinkSlim2 dataset is a real-world dataset, obtained by a study de-
scribed in more detail in [109]. The dataset consisted of information
collected from 135 overweight individuals throughout the day for eight
weeks via a mobile application.

Each participant’s EMA data was prepared for analysis separately. After
checking data compliance, 76 individuals were retained for further anal-
ysis. Additionally, only a subset of the captured variables was selected
again. This was necessary because the majority were categorical vari-
ables and some categories were infrequently represented in the dataset,
reducing their utility for robust analysis. Therefore, their distribution was
evaluated. Infrequent variables were then removed to finally retain only
the 13 informative ones.

The final variables included various positive and negative emotions, lo-
cation, activity, social context, and type of consumed food. The emotion-
related variables were measured on a scale from 0 to 10. All the other
variables (e.g., activity and location) were categorical, including a long
set of predefined choices for each one. For example, the categorical vari-
able "activity" was summarized into 11 separate categories. Following,
these needed to be transformed into numerical variables suitable for ma-
chine learning algorithms. A common approach for this transformation is
one-hot encoding, converting each category of a categorical variable into
a new binary variable. In this encoding scheme, if an instance (or sam-
ple) belongs to a particular category, the corresponding variable takes
the value 1, while all other columns are 0. This strategy leads to a signif-
icant increase in the total number of variables used in the analysis, from
3 categorical to 21 binary variables. Given the complexity introduced by
the large number of binary variables, emotion variables were also split in
2 (high and low) or 3 categories (high, medium, low). This categorization
helps simplify the overall data structure. Additional figures illustrating
the dataset’s characteristics are available in the supplementary material
for this chapter, specifically in Figures 2.15 and 2.16.
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2.6.3. NSMD DATASET
The NSMD dataset is a real-world EMA dataset collected as part of the
New Science of Mental Disorders (NSMD) project. It is a study in which
data on mental health was collected from students in Dutch universities
[36, 110]. A set of 288 individuals were monitored eight times a day for
28 days, leading to a total of 224 time-points per individual. However,
due to missing data, not all individuals had sufficient data for analysis. Af-
ter setting the compliance to 50%, that is a minimum of 112 time points,
187 individuals were included in the analysis. At each time-point a set of
65 psychopathology-related variables was assessed. Most variables were
rated on a 7-point Likert scale. According to domain experts, to reduce
the number of examined features, some variables were not included in
the analyses, either due to limited within-person variance or due to rel-
atively less relevance, while some connected EMA items were merged
and averaged together. For instance, some variables, such as positive
affect (PA) and negative affect, were averaged across all their relevant
variables (e.g., happy, calm, etc. and sad, angry, etc., respectively). An
overview of the examined variables is given in Table 2.2.

Table 2.2: Overview of the EMA variables of the NSMD dataset.

Variable Description Raw or Averaged EMA

PA Positive Affect Averaged

NA Negative Affect Averaged

Som_neg Somatic Negative Affect Averaged

Self_esteem Self Esteem Averaged

Enj_act Enjoyment of activities Averaged

Enj_social Enjoyment of social encounters Averaged

Crave_Food Craving food Raw

Crave_Other Craving other Raw

In control In control Raw

Concentrated Concentrated Raw

Worried Worried Raw

Impulsivity Impulsivity Raw

Before analysis, further exploration of the data’s characteristics is nec-
essary to get a better understanding of each variable. First, examining
the distributions of individual variables provides useful insights regarding
their spread and counts. In Figure 2.11, histograms are used to assess
the distributions of each variable separated regarding the whole dataset.
Similarly, the distribution of the variables could be investigated at an in-
dividual level.

Additionally, estimating different statistical properties, such as mean
values, standard deviation and variance of each variable could provide
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Figure 2.11: NSMD Dataset: Histograms of the frequency and spread of
each variable.

more insights about the examined data. As shown in Figure 2.12, visual
representations through boxplots can summarize these within-individual
statistical properties across all individuals separately for each variable.
In particular, variance is an important property indicating the level of
variability within the dataset. Such exploration facilitates identifying un-
informative variables and outliers. As a next step, further data explo-
ration could follow, including variable correlation and pairwise associa-
tions among them.



2

38 2. Methodological Background: From the linear network approach to
non-linear modeling

Var 
1

Var 
2

Var 
3

Var 
4

Var 
5

Var 
6

Var 
7

Var 
8

Var 
9

Var 
10

Var 
11

Var 
12

1

2

3

4

5

6

7

M
ea

n

Mean of Each Variable

Var 
1

Var 
2

Var 
3

Var 
4

Var 
5

Var 
6

Var 
7

Var 
8

Var 
9

Var 
10

Var 
11

Var 
12

0.0

0.5

1.0

1.5

2.0

2.5

St
an

da
rd

 D
ev

ia
tio

n

Standard Deviation of Each Variable

Var 
1

Var 
2

Var 
3

Var 
4

Var 
5

Var 
6

Var 
7

Var 
8

Var 
9

Var 
10

Var 
11

Var 
12

0

1

2

3

4

5

6

Va
ria

nc
e

Variance of Each Variable

Figure 2.12: NSMD Dataset: Distributions regarding 3 statistical proper-
ties (mean, standard deviation and variance) of each vari-
able.

2.7. CONCLUSIONS
In this chapter, the background information of this dissertation is pro-
vided. Beyond describing the complex structure of the multivariate time-
series EMA data, we followed with more methodological aspects of the
research. Starting from the linear VAR models, we explore the challenges
arising and the opportunities emerging when applying more advanced
non-linear models. The focus is on the interpretable non-linear EBM
model that is applied in the following chapters (Chapter 3, 5 and 7) of
this dissertation. However, it is important to note that different models
can be applied depending on the task that we need to address. In detail,
an overview of all the investigated output tasks along with the 3 utilized
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real-world EMA datasets is presented. To summarize, the connection of
all examined datasets and output tasks of the main chapters (3-7) is de-
picted in Table 2.3.

Table 2.3: Summary of the datasets and outputs tasks examined in each
of the main chapters (3-7) in the dissertation.

Chapter Dataset Output Task

3 AlcoholDrink
ThinkSlim2 Binary Classification

4 NSMD Clustering

5 NSMD Clustering

6 NSMD MTS Classification

7 NSMD Binary Classification
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Figure 2.13: AlcoholDrink Dataset: Histograms of the frequency and
spread of each variable.
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Figure 2.14: AlcoholDrink Dataset: Distributions regarding 3 statistical
properties (mean, standard deviation and variance) of each
variable.
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Figure 2.15: ThinkSlim2 Dataset: Histograms of the frequency and
spread of each variable. The categorical variable has been
removed for consistency.



2.8. Supplementary Material

2

43

Va
r 1

Va
r 2

Va
r 3

Va
r 4

Va
r 5

Va
r 6

Va
r 7

Va
r 8

Va
r 9

Va
r 1

0
Va

r 1
1
Va

r 1
2
Va

r 1
3
Va

r 1
4
Va

r 1
5
Va

r 1
6
Va

r 1
7
Va

r 1
8
Va

r 1
9
Va

r 2
0
Va

r 2
1
Va

r 2
2
Va

r 2
3
Va

r 2
4
Va

r 2
5
Va

r 2
6
Va

r 2
7
Va

r 2
8
Va

r 2
9
Va

r 3
0
Va

r 3
1
Va

r 3
2
Va

r 3
3
Va

r 3
4
Va

r 3
5
Va

r 3
6

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n

Mean of Each Variable

Va
r 1

Va
r 2

Va
r 3

Va
r 4

Va
r 5

Va
r 6

Va
r 7

Va
r 8

Va
r 9

Va
r 1

0
Va

r 1
1
Va

r 1
2
Va

r 1
3
Va

r 1
4
Va

r 1
5
Va

r 1
6
Va

r 1
7
Va

r 1
8
Va

r 1
9
Va

r 2
0
Va

r 2
1
Va

r 2
2
Va

r 2
3
Va

r 2
4
Va

r 2
5
Va

r 2
6
Va

r 2
7
Va

r 2
8
Va

r 2
9
Va

r 3
0
Va

r 3
1
Va

r 3
2
Va

r 3
3
Va

r 3
4
Va

r 3
5
Va

r 3
6

0.0

0.1

0.2

0.3

0.4

0.5

St
an

da
rd

 D
ev

ia
tio

n

Standard Deviation of Each Variable

Va
r 1

Va
r 2

Va
r 3

Va
r 4

Va
r 5

Va
r 6

Va
r 7

Va
r 8

Va
r 9

Va
r 1

0
Va

r 1
1
Va

r 1
2
Va

r 1
3
Va

r 1
4
Va

r 1
5
Va

r 1
6
Va

r 1
7
Va

r 1
8
Va

r 1
9
Va

r 2
0
Va

r 2
1
Va

r 2
2
Va

r 2
3
Va

r 2
4
Va

r 2
5
Va

r 2
6
Va

r 2
7
Va

r 2
8
Va

r 2
9
Va

r 3
0
Va

r 3
1
Va

r 3
2
Va

r 3
3
Va

r 3
4
Va

r 3
5
Va

r 3
6

0.00

0.05

0.10

0.15

0.20

0.25

Va
ria

nc
e

Variance of Each Variable

Figure 2.16: ThinkSlim2 Dataset: Distributions regarding 3 statistical
properties (mean, standard deviation and variance) of each
variable. The categorical variable has been removed for
consistency.





3
COMPARE IDIOGRAPHIC AND
NOMOTHETIC APPROACHES

While previous research on EMA data for mental disorders was mainly
focused on network models and linear individual regression-based ap-
proaches, this chapter goes a step further by exploring the use of
non-linear ML models in EMA classification problems. ML models can
enhance the ability to accurately predict the occurrence of different
psychopathology-related variables or events by recognizing complicated
patterns between variables in data. To evaluate the efficacy of non-linear
models, relying on ensembles of trees, their performance is compared to
linear models using imbalanced synthetic and real-world EMA datasets.
Moreover, apart from personalized approaches, nomothetic or group-
based prediction models, which integrate data from more than one
individual, are examined. Such approaches are also likely to offer an
enhanced performance compared to individual or personalized models.

Parts of this chapter have been published in

• M. Ntekouli, G. Spanakis, L. Waldorp, and A. Roefs. “Using explainable boost-
ing machine to compare idiographic and nomothetic approaches for ecological
momentary assessment data”. In: International Symposium on Intelligent Data
Analysis. Springer. 2022, pp. 199–211
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3.1. INTRODUCTION
Recent technological and methodological advancements in EMA have
significantly renewed the research interest in psychology and psychia-
try. Particularly, through EMA, a large amount of personalized data has
become available, providing the means for further exploring mental dis-
orders [99]. With this large data availability, there has been a significant
focus on developing statistical methods to model psychopathology [57].
Some practical applications of such models could be to predict the course
of illness, determine treatment response or develop tailored psychiatric
interventions [2].

Based on the literature, EMA time-series data have been mostly an-
alyzed by applying a multivariate regression-based approach [57, 90].
More specifically, the most popular class of time-series models is the Vec-
tor Autoregressive (VAR) model that aims at estimating the dynamical in-
teractions between all the measured variables (i.e., network structures)
[46]. However, the fact that these models can only estimate linear sta-
tistical relationships can be a significant challenge for mental disorders,
where the involved interactions are likely to be quite complex. When
many symptoms or variables are involved in the course, these are more
prone to interact in a non-linear fashion with each other. Thus, linear
models seem insufficient to uncover the possible non-linear interactions
and describe precisely the real complex nature of mental disorders.

A promising approach that can learn such complex and higher-order in-
teractions of symptoms involves leveraging non-linear machine learning
(ML) models [60]. ML models can enhance the ability to accurately pre-
dict the occurrence of different EMA variables or events by recognizing
complicated patterns or relations between variables in existing data.

This chapter addresses three key research objectives, identified as
RQ1, RQ2, and RQ3 in Section 1.7. It explores a spectrum of predictive
approaches, from idiographic (personalized or individual) approaches un-
der RQ1, through nomothetic (group-based) approaches partially cov-
ering RQ2, to a more advanced integrative approach partially address-
ing RQ3, that balances personalized and group-based strategies. First,
according to the idiographic approach, personalized models are typi-
cally applied, as there are possibly different underlying mechanisms that
drive future behavior in each individual. Thus, different non-linear inter-
pretable models are evaluated in terms of performance to test whether
they are superior to baseline linear models. Second, we should acknowl-
edge that shared influences among different individuals may provide a
complementary predictive utility. Therefore, prediction models are ap-
plied in a nomothetic approach showing that integrating data of more
than one individual in a single model could also accurately predict fu-
ture outcomes at an individual level [112]. The third approach balances
the strengths of both idiographic and nomothetic approaches through a
more advanced two-step process. Specifically, this method is designed
to incorporate the insights gained from the nomothetic model (step 1)
into the personalized models of each individual (step 2). By examining
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these methodologies, this chapter contributes to developing more re-
liable models that could facilitate a better understanding of individual
behaviors and interactions, at both personalized and group levels.

3.2. METHODOLOGY
This section provides an overview of the approaches used in this chap-
ter. It explores a range of predictive approaches, starting with idio-
graphic (personalized or individual) methods, moving through nomo-
thetic (group-based) approaches, and progressing to a more advanced
integrative approach, which balances personalized and group-based
strategies.

3.2.1. IDIOGRAPHIC (PERSONALIZED OR INDIVIDUAL) APPROACH
Based on the fact that mental disorders can be modeled as a complex
system, we assume that the course of illness and EMA patterns differ
remarkably across individuals [113]. Most individuals suffering from the
same disorder are likely to exhibit different symptoms, so different mech-
anisms possibly influence and drive future behavior [114]. Therefore, it
is proposed that each individual should be examined separately using
personalized prediction models [45], as illustrated in Figure 3.1.

Input Data
Ind1

Input Data
Ind2

Input Data
IndN

.  
. 
. 

Model 1

Model 2

Model N

Figure 3.1: Idiographic Approach: The data from each individual (e.g.
Ind1) is used to train a model (Model 1).

As already discussed in Section 2, starting from the widely used linear
models, the progression to more sophisticated models allows for non-
linear representations of features and interactions of features [105]. A
flexible solution was given by developing the Generalized Additive Mod-
els plus Interactions (GA2Ms), enhancing model complexity, accuracy
and interpretability [106]. In this work, a fast implementation of the
GA2Ms algorithm is used, called Explainable Boosting Models (EBMs),
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which is part of Microsoft’s open-source Python package, called Inter-
pretML [106]. Because EBMs is a relatively novel method, its perfor-
mance is evaluated by comparing it to other full-complexity ML models,
such as Extreme Gradient Boosting (XGBoost), Gradient Boosting Trees
(GradBoost) and Random Forest (RF) [115]. Afterwards, non-linear mod-
els are also compared to linear models, such as Logistic Regression (Lo-
gReg) and Support Vector Machines (SVM), using a linear kernel.

3.2.2. NOMOTHETIC (GROUP-LEVEL) APPROACHES
Although personalized models capture the unique patterns of each in-
dividual, commonalities among different individuals may provide com-
plementary predictive utility [116]. Thus, group-level prediction studies
are also likely to offer an enhanced individual performance. Especially, in
the case of more advanced ML models, incorporating more data could be
of more help, compared to the traditional linear models. This approach
could have a clear advantage in uncovering potential complex hidden
relationships between variables. More specifically, two nomothetic ap-
proaches are investigated, the using-all-data (using_all) and the more
advanced Knowledge Distillation (KD). These are described as follows.

NOMOTHETIC APPROACH: USING-ALL-DATA (USING_ALL)

The most trivial way of integrating data of more than one individual in
a model is to concatenate the data points of all individuals together in
a single dataset. The augmented or aggregated dataset is then used
to construct a group-based model. Specifically, when all data from in-
dividuals within the same data collection effort is used, this approach
is referred to as a population model. Such models produce generaliz-
able predictions that can be relevant to a wider range of individuals. For
example, a group-based model can be applied to new individuals who
have not been included in the training process of the model. An addi-
tional scenario falling into that category refers to individuals for whom
personalized modeling is impractical. This might occur due to a lack of
adequate time points to train a robust personalized model. Therefore,
a group-based approach provides valuable predictions and insights for
these individuals, reaching a broader target population, with limited mi-
nority classes points or even total data points.

NOMOTHETIC APPROACH: KNOWLEDGE DISTILLATION (KD)

The second proposed approach is based on the Knowledge Distillation
method, also known as the teacher-student framework [74]. In this
approach, information extracted from a larger, more general (teacher)
model is used to enhance a smaller, more specialized (student) model.
More specifically, in our context, information from training a group-level
(teacher) model using all data can be utilized in a personalized (student)
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training concept. Thus, the KD method effectively builds on the group-
level modeling process established by the using_all approach, allowing
the specialized student models to benefit from the broader learning in-
sights of the teacher model.

The approach of Knowledge Distillation was originally developed to fill
the gap between the expressive power of the large models and the learn-
ability of the smaller models in Neural Networks (NNs) [74]. While large
NN models are known for their power and success in capturing com-
plex patterns in data, these are often computationally expensive, over-
parametrized and too generalized to learn and extract insights regarding
targeted parts of the data [117]. In practice, KD involves a 2-step training
process, where a small NN is trained after incorporating additional infor-
mation from a larger and more complex NN. Comprehensive overviews
of this technique can be found in the survey papers [118, 119].

However, the aforementioned gap does not only exist in NNs but also
in other machine learning methods, such as using the tree-based models
described above [120, 121]. So, the distillation method using information
extracted from larger models can be further exploited in non-NN models.
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Figure 3.2: Overview of the proposed Knowledge Distillation method
adapted to EMA, using group-level (using_all) models as
teacher models and individual models as student models.

Inspired by the original concept, the proposed Knowledge Distillation
method in our case is illustrated in Figure 3.2. The first part consists
of the using_all approach, where the teacher model is trained on data
from all individuals in a classification task. Following this, the outcome
information from this model is used to train personalized student models
for each individual separately. Instead of using the ground-truth (hard)
outcome labels, the additionally-gained information is achieved through
probabilities derived from the output of the softmax function on the
teacher’s logits (raw model’s outputs). However, in classical ML models,
we can work directly with probabilities instead of logits. Then, we adjust
the probabilities by treating them as pseudo-logits, applying temperature
softmax to smooth and calibrate the output, making the predictions less
overconfident and more representative of true likelihoods. Specifically,
the probabilities y of the training samples, referring to each output class
, are softened using a temperature softmax function. The smoothened
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class probabilities p (soft labels) are calculated according to Equation
3.1 and Figure 3.3, where T is the temperature hyperparameter.

p =
exp( yT )
∑

j exp(
yj
T )

(3.1)
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.

.

.
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V
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Figure 3.3: The proposed Knowledge Distillation method: After inputting
each data sample to the teacher model, the extracted proba-
bilities y are used to the temperature softmax function. The
produced p1 or p2 are the labels (in the case of a binary clas-
sification) for the student models.

The T hyperparameter plays an important role in smoothing the distri-
bution of the outputs, which is necessary to distill as much information
as possible. When T = 1, p refers to the typical probabilities derived
from a softmax function. However, in cases where the correct label is
assigned with a very high (close to 1) probability, this does not provide
much additional information than the ground-truth hard labels. To pre-
vent such cases, a temperature T > 1 is applied [119]. An example of
the difference between hard and soft outputs, regarding both T = 1 and
T > 1, is given in Table 3.1.

This higher temperature setting effectively softens the probability dis-
tribution. However, selecting the appropriate degree of smoothing af-
fects how soft the probabilities become. For example, a moderate in-
crease in T, such as T = 5, could provide an informative distribution,
retaining a reasonable difference in soft labels. On the contrary, a higher
T, such as T = 100, smoothens the differences even more leading to al-
most equal probabilities. Therefore, the choice of T should be carefully
calibrated.

Subsequently, during the second part of the process, the smoothened
probabilities (or soft labels) are used as labels for the personalized stu-
dent models. Compared to conventional personalized training that uses
hard labels, distillation can provide additional useful information from
other individuals to improve the personalized models.
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Table 3.1: An example of how binary (hard) outputs are transformed to
soft labels using different T values in temperature softmax.
When T = 1, soft labels refer to typical probabilities, whereas
when T > 1, to smoothened probabilities used in KD.

Hard Labels Soft Labels

T = 1 T > 1

0 0.079 0.492

0 0.222 0.496

0 0.450 0.466

1 0.998 0.516

1 0.932 0.509

1 0.661 0.501

3.3. EXPERIMENTAL SETUP
3.3.1. EMA DATASETS
EMA data is organized in a hierarchical structure for each individual (dis-
cussed in Section 2.2), with observations collected multiple times a day
for a predefined period of several weeks. The total number of observa-
tions as well as the collection period can be different among individuals
because some may experience difficulties in following the schedule of
the surveys. The characteristics of all datasets (presented in detail in
Section 2.6) used in this chapter, following task-specific preprocessing
for 1-lag or next time-point classification, are summarized in Table 3.2.

SYNTHETIC DATASETS

Due to a lack of access to large EMA datasets, we follow a simple method
for generating random EMA datasets. This method addresses the chal-
lenge of limited data availability by creating randomized datasets that
simulate real-world conditions. Each synthetic dataset is designed to
consist of the feature vectors and labels for each simulated patient, aim-
ing at a 2-class classification problem. It is also commonly noticed that
medical-related EMA datasets, as well as the following examined real-
world datasets, are characterized as imbalanced. This means that the
majority of samples belongs only to one class, whereas much fewer to
the other class. Thus, in this case, the ratio of samples assigned to the
two classes is 0.7 : 0.3 in the synthetic datasets as well.

Furthermore, the datasets must be created in a way to be structurally
similar to the real EMA data. First, these must incorporate multivariate
ordinal and categorical variables. This is a challenging issue, especially in
high-dimensional datasets. The method for generating our feature vec-
tors is based on sampling from a different random normal distribution for
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Table 3.2: Characteristics of the examined datasets. For imbalance ratio
and training/test sets, the mean and standard deviation values
of all individuals are presented, after preprocessing.

Dataset #Individuals #Features Imbalance Ratio #Training Data #Test Data

Synthetic 20, 50, 100 25, 60 2.33 35,70,210 15,30,90

AlcoholDrink 24 15 8.45(5.45) 72.83(12.02) 31.87(5.24)
ThinkSlim2 57 37 5.82(3.25) 86(38.72) 37.51(16.68)

each one. After sampling, these continuous values are transformed into
ordinal features by applying an equal-width histogram binning, which di-
vides each distribution into intervals of equal width. This process results
in a random selection of six or two distinct ordinal values per feature.
When six values are used, these resemble the ordinal scale of EMA ques-
tions, whereas categorical EMA questions are typically encoded as binary
variables, represented by two distinct values.

It is also often necessary to impose some flexibility on the data vari-
ables, such as noise. Noise can be added to both output labels and
feature vectors. In this setup, a small amount of noise is introduced by
randomly reassigning 20% of the labels to samples and shuffling the val-
ues of 20% of the features. Additionally, various options for other char-
acteristics of the synthetic datasets, such as the number of individuals,
features, and samples, are evaluated.

DATASET: ALCOHOLDRINK

This first real-world dataset is the AlcoholDrink dataset, described in
[108]. Regarding the output variable, the aim of this prediction was the
occurrence or not of drinking events at the next time-point. So, a positive
label was assigned to each sample when the number of alcoholic drinks
at the next time-point was one or higher.

DATASET: THINKSLIM2

The second real-world dataset, ThinkSlim2, is larger and more challeng-
ing. It was obtained by a study described in more detail in [122], [109].
Regarding the output variable, the examined scenario was aiming at pre-
dicting the next healthy or unhealthy eating event. So, a healthy or un-
healthy label was assigned to each sample according to the type of food
consumed at the next time-point.

3.3.2. DATA PREPARATION
For each dataset, each participant’s EMA data was prepared for analysis
separately. These were assessed for the frequency of daily observations
as well as the frequency and distribution of the outcome events. For
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instance, in the case of the AlcoholDrink dataset, the counts of the out-
come events (labels) are shown in Figure 3.4.
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Figure 3.4: AlcoholDrink Dataset: Counts of outcome labels (Label 1 and
Label 2) across Individuals.

Additionally, because of the final goal to predict (or classify) the next
time-point event, consecutive data points had to be collected. For ex-
ample, for each data point, if the following one (collected within the next
2 hours) was absent then we could not retrieve its prediction target and
eventually it was also considered as missing. That way, some individu-
als were found to have so few outcome events of the minority class that
subsequent cross-validation steps could not be conducted. So, these
participants were also excluded from the final dataset. As a result, the
number of retained individuals was 24 for the AlcoholDrink dataset hav-
ing an average of 6.18 (std = 0.90) daily points and 57 for ThinkSlim2
with an average of 3.39 (std = 2.05) points.

As further seen in Table 3.2, data points of each individual were split
sequentially at fixed time intervals into two datasets, a training and a test
set, containing the first 70% and last 30% of the data points, respectively.

3.3.3. DATA ANALYSIS
IDIOGRAPHIC APPROACH

According to the idiographic approach, separate predictive models were
applied to each individual, using various ML algorithms. The examined
ML algorithms fall into the categories of linear or non-linear models. Re-
garding the linear models, Logistic Regression (LogReg) and SVM (using a
linear kernel) were used, whereas for non-linear models EBMs, XGBoost,
Gradient Boosting (GradBoost) and Random Forest (RF).

A necessary step is hyperparameter tuning, which frequently has a big
impact on the model performance. In this setting, a time-series cross-
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validation (CV) method, a variation of K-Fold designed for sequential
data, was used, splitting the data into k + 1 folds. In each iteration,
an increasing number of folds is used for training, with the next fold re-
served for validation. This approach maintains the temporal order of the
data while allowing for tuning of key hyperparameters in the tree-based
methods, as illustrated in Figure 3.5.

The examined hyperparameters were different for each method. The
number of pairwise interactions was important for EBMs. The learning
rate, maximum depth, the minimum number of samples on a leaf, the
gamma value and the fraction of the utilized features were examined
in the case of XGBoost, whereas the learning rate and maximum depth
when building the Gradient Boosting trees. In the case of Random For-
est, the number of estimators, maximum depth and minimum number
of leaf nodes were considered. All these combinations were exhaustively
explored for each case using Grid Search and the one resulting in the
best cross-validation score was retained for the following analysis.

The metric score of interest was the area under the ROC curve (AUC),
measuring the true-positive rate and false-positive rate for the model’s
predictions using a set of different probability thresholds. AUC score was
chosen for the prediction of both classes to be taken into account equally,
regardless of the number of samples these classes contained. In other
words, the prediction of samples belonging to the majority class should
not play a more important role than predicting samples of the minority
class. Similarly, other macro-average metrics, such as precision, recall,
or F1 score, can also be used to achieve a balanced evaluation.
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Figure 3.5: Time-series K-fold cross-validation (example for K=4).

NOMOTHETIC APPROACH
According to the nomothetic approach, the two methods described in
Section 3.2.2 were investigated using the Explainable Boosting Machine
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models (EBMs). EBMs were built using data from all individuals and then
compared to the traditional personalized EBMs. In the first method, the
training datasets from all individuals were concatenated into a single
group-level dataset to train an EBM, referred to as EBM_all when applying
the using_all approach. The number of interactions was fine-tuned to
select the optimal value, as in the personalized models. The performance
of this EBM_all model was evaluated separately on the testing set of
each individual. The test sets are kept the same as in the personalized
approach.

In the second method, information obtained from the first method
(EBM_all used as teacher model) was further integrated into personal-
ized EBMs. The class probabilities of the training samples were extracted
and transformed to smoothed probabilities using a temperature softmax
function, with the temperature value being selected from a range be-
tween 2 and 200. Thus, new datasets were created using the training
samples of each individual and the extracted "probabilities" as a target
label, instead of the initial hard labels (0,1). These new datasets created
for each individual were used to train the student models, which are EBM
regression models.

3.4. EXPERIMENTAL RESULTS
3.4.1. SYNTHETIC DATASET
IDIOGRAPHIC APPROACH
The initial step in evaluating the described methods was to create syn-
thetic datasets. Using synthetic data, it is easier to understand the prob-
lem we have to solve and develop effective and efficient methods for
that. To create the data, different values for the dataset’s parameters,
such as number of subjects, features and samples, were independently
selected and investigated.

Synthetic datasets are first analyzed using a personalized approach.
For each combination of the chosen parameters, personalized non-linear
and linear models are applied to each individual of every dataset sep-
arately. After applying all personalized models, the mean and standard
deviation values of the performance (AUC scores) across all created in-
dividuals are presented in Table 3.3. It is visible that the average AUC
scores are greater when applying non-linear models. The extracted AUC
results show that EBM models produce the best average scores in most
datasets. However, even when RF or XGBoost show the best scores, their
difference to EBMs is small. Moreover, EBMs achieve more accurate per-
formance when trained on a large number of samples, such as 100 or
300.

NOMOTHETIC APPROACH
Subsequently, personalized EBMs are evaluated in comparison to the
two nomothetic approaches described in Section 3.2.2, the using-all-data
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Table 3.3: Performance of personalized models (EBM, XGBoost, Gradient
Boosting, RF, SVM and Logistic Regression): the mean and
standard deviation of the AUC scores are given for all synthetic
datasets (each having a different number of users, features
and samples). Numbers in bold indicate the highest mean
AUC score for each dataset, while underlined numbers high-
light cases, where EBMs achieve mean AUC scores that are
close to the highest score, signifying competitive performance.

#Users #Feat #Samples EBM XGBoost Grad RF SVM LogReg

20 25 50 0.715 (0.149) 0.747 (0.145) 0.699 (0.179) 0.734 (0.168) 0.638 (0.185) 0.700 (0.149)

20 25 100 0.736 (0.142) 0.707 (0.127) 0.706 (0.132) 0.735 (0.130) 0.664 (0.130) 0.702 (0.087)

20 25 300 0.695 (0.154) 0.663 (0.148) 0.678 (0.133) 0.691 (0.147) 0.684 (0.163) 0.667 (0.157)

20 60 100 0.757 (0.147) 0.762 (0.181) 0.745 (0.153) 0.760 (0.142) 0.620 (0.147) 0.634 (0.143)

20 60 300 0.761 (0.127) 0.752 (0.121) 0.749 (0.107) 0.747 (0.127) 0.672 (0.105) 0.685 (0.113)

50 25 50 0.736 (0.170) 0.722 (0.170) 0.668 (0.157) 0.711 (0.155) 0.634 (0.188) 0.657 (0.173)

50 25 100 0.718 (0.128) 0.718 (0.133) 0.706 (0.128) 0.726 (0.121) 0.655 (0.145) 0.690 (0.132)

50 25 300 0.750 (0.111) 0.739 (0.108) 0.741 (0.107) 0.751 (0.111) 0.739 (0.123) 0.744 (0.121)

50 60 100 0.680 (0.154) 0.684 (0.148) 0.675 (0.136) 0.667 (0.148) 0.558 (0.150) 0.603 (0.136)

50 60 300 0.764 (0.101) 0.755 (0.105) 0.749 (0.103) 0.757 (0.101) 0.685 (0.101) 0.701 (0.102)

100 25 50 0.688 (0.179) 0.685 (0.158) 0.670 (0.172) 0.695 (0.148) 0.572 (0.193) 0.629 (0.177)

100 25 100 0.675 (0.147) 0.676 (0.144) 0.671 (0.144) 0.690 (0.147) 0.613 (0.133) 0.618 (0.131)

100 25 300 0.751 (0.110) 0.742 (0.101) 0.744 (0.104) 0.757 (0.109) 0.748 (0.109) 0.748 (0.110)

100 60 100 0.737 (0.131) 0.711 (0.134) 0.718 (0.122) 0.696 (0.122) 0.600 (0.131) 0.634 (0.122)

100 60 300 0.722 (0.131) 0.709 (0.128) 0.710 (0.117) 0.710 (0.126) 0.665 (0.091) 0.668 (0.112)

EBMs (EBM_all) and knowledge distillation (KD) method. In the case of
knowledge distillation, different values for the temperature parameter
are evaluated, ranging from 1 to 100. After applying all examined meth-
ods, the mean and standard deviation values of the AUC scores produced
by each method for each synthetic dataset are presented in Table 3.4.

In the majority of the examined datasets, it is apparent that using
personalized EBMs leads to worse performance than when either of the
nomothetic methods is applied. More specifically, EBM_all gives the best
results compared to the distillation method in all but three datasets,
whereas in one of these, both methods achieved the same score. It
is also interesting to mention that their difference in mean AUC score is
quite large in certain datasets. This is the case in datasets with a small
number of samples, such as when characteristics ({users, features, sam-
ples}) are {20, 25, 50}, {50, 25, 50}, {100, 25, 50}, {50, 60, 100} and
{100, 60, 100}. Therefore, it is important to highlight that collecting
sufficient data from each user can benefit the knowledge distillation pro-
cess.

Furthermore, such comparative results could reveal insights regarding
the role of temperature T in the predictive performance of KD. After ex-
ploring various values, from T = 1 to T = 100, a trend was apparent
showing that T = 100 yields the highest AUC results, with a small differ-
ence to the overall best EBM_all. Therefore, increasing T to 100 leads to
a softer probability distribution, which seems to facilitate a more effec-
tive transfer of information. Also, the difference in the effects highlights
the importance of the temperature setting in achieving optimal perfor-
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Table 3.4: Performance of the two nomothetic methods (EBM_all and KD):
the mean and standard deviation of the AUC scores are given
for all synthetic datasets (each having a different number of
users, features and samples). Numbers in bold indicate the
highest mean AUC score for each dataset, while underlined
numbers indicate cases where distillation outperforms person-
alized EBMs.

#User #Feat #Samples EBM EBM_all KD (T = 1) KD (T = 5) KD (T = 100)

20 25 50 0.715 (0.149) 0.804 (0.151) 0.753 (0.178) 0.768 (0.185) 0.776 (0.178)

20 25 100 0.736 (0.142) 0.758 (0.162) 0.739 (0.134) 0.735 (0.139) 0.753 (0.148)

20 25 300 0.695 (0.154) 0.691 (0.172) 0.698 (0.167) 0.694 (0.171) 0.690 (0.179)

20 60 100 0.757 (0.147) 0.813 (0.111) 0.786 (0.092) 0.779 (0.096) 0.795 (0.097)

20 60 300 0.761 (0.127) 0.762 (0.119) 0.757 (0.111) 0.756 (0.113) 0.762 (0.119)

50 25 50 0.736 (0.170) 0.756 (0.183) 0.707 (0.169) 0.719 (0.170) 0.731 (0.166)

50 25 100 0.718 (0.128) 0.747 (0.146) 0.713 (0.162) 0.720 (0.164) 0.733 (0.160)

50 25 300 0.750 (0.111) 0.773 (0.133) 0.762 (0.134) 0.769 (0.135) 0.769 (0.135)

50 60 100 0.680 (0.154) 0.735 (0.140) 0.689 (0.144) 0.686 (0.147) 0.700 (0.151)

50 60 300 0.764 (0.101) 0.783 (0.120) 0.751 (0.119) 0.755 (0.122) 0.766 (0.123)

100 25 50 0.688 (0.179) 0.767 (0.175) 0.720 (0.167) 0.725 (0.171) 0.736 (0.166)

100 25 100 0.675 (0.147) 0.723 (0.144) 0.719 (0.138) 0.720 (0.135) 0.726 (0.141)

100 25 300 0.751 (0.110) 0.769 (0.121) 0.767 (0.120) 0.765 (0.119) 0.764 (0.121)

100 60 100 0.737 (0.131) 0.761 (0.140) 0.712 (0.150) 0.721 (0.147) 0.738 (0.148)

100 60 300 0.722 (0.131) 0.736 (0.142) 0.724 (0.133) 0.720 (0.132) 0.729 (0.139)

mance.

3.4.2. DATASET: ALCOHOLDRINK
IDIOGRAPHIC APPROACH

First, the total number of 24 individuals is analyzed using a personal-
ized approach. After applying all different ML models, the results of the
personalized predictive models on the testing sets indicated that the pro-
duced results highly vary across individuals. For instance, some individ-
uals had quite high AUC results, whereas others’ results were at chance
level.

To compare the different ML models, we show some of the statistical
properties of all AUC scores, using the box and whisker plots in Figure
3.6. In this figure, we present the performance of EBMs compared to the
full-complexity ML models as well as the performance of non-linear mod-
els compared to the traditionally used linear ones. Regarding the first
comparison, the AUC distribution for EBMs is comparable to the ones of
the other non-linear models. Apart from RF, which shows a slightly better
overall performance, all statistical properties of the EBM scores reached
higher values than the other three models. The median AUC score for
EBM is around 0.81, only a bit lower than XGBoost (0.83). It can also
be noticed that the minimum value of EBM performance was the highest
among ML models, indicating a smaller variation among individuals in
the case of EBMs.
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Figure 3.6: AUC performance of all non-linear, including EBMs, XGBoost,
Gradient Boosting (GradBoost) and Random Forest (RF), and
linear models, including Logistic Regression (LogReg) and
SVM.

Regarding the second comparison, a distinction between the linear and
non-linear models is visible. All statistical properties of the AUC scores
are lower in the case of linear models. These findings highlight the ability
of non-linear ML models to enhance the predictive performance of the
traditionally applied linear ones.

NOMOTHETIC APPROACH

In the nomothetic approach, data from all individuals are pooled into a
single dataset and modeled collectively by one EBM (EBM_all), or further
exploited in a personalized way (KD). To facilitate comparison, box and
whisker plots are utilized and presented (as before) in Figure 3.7.

Using a nomothetic approach, the AUC distribution of the KD method
is improved compared to that of personalized EBMs. This shows more
consistent performance scores across individuals, apart from 4 outliers.
Regarding the EBM_all method, its AUC distribution is more spread out,
with lower 25th percentile and minimum values compared to personal-
ized EBMs and KD. However, the upper half of its distribution is com-
parable to the respective part of the distributions obtained through the
other cases. Subsequently, by comparing the median values of both ap-
proaches, we see that there is a slight distinction between them, where
personalized EBMs reach the level of 0.80, whereas around 0.76 and
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Figure 3.7: Comparing the performance of personalized EBMs to the two
nomothetic approaches (EBM_all and KD).

0.79 for the EBM_all and KD methods, respectively. In contrast to the
results on synthetic datasets, we see that in a more realistic dataset, the
knowledge distillation method can lead to improved results compared to
EBM_all.

3.4.3. DATASET: THINKSLIM2
IDIOGRAPHIC APPROACH

Similar to the previous dataset, the performance of 57 personalized pre-
dictive models is first evaluated. As the produced results highly varied
across individuals, their performance is assessed here through box and
whisker plots. Figure 3.6 presents the AUC scores of all different ML
methods. According to AUC scores, all models’ distributions are compa-
rable to each other, having quite a large range. All methods show sim-
ilar poor performance, achieving a low median value of around 0.57 in
the case of non-linear models, whereas around 0.54 for the linear ones.
That could be due to the more complex and challenging structure of this
dataset, containing a larger number of individuals as well as features,
but not more data samples compared to the previous dataset. Another
interesting aspect of this experiment is that some AUC values are quite
close to zero (for all setups). This means that probabilities produced
by all models for these individuals lead to a flipped prediction label for
almost all testing points.
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NOMOTHETIC APPROACH

Finally, personalized EBMs were compared to both nomothetic ap-
proaches, EBM_all and KD. The results of all methods, in terms of AUC
scores, are presented in Figure 3.7. The median, along with the 25th
and 75th percentiles, are similar for both KD and EBM_all and are higher
than the respective values for the personalized EBMs. The mean rela-
tive AUC increase for KD and EBM_all compared to EBMs is at 17% and
14%, respectively. It is also worth mentioning that one individual has
an AUC score equal to 0. This means that the probabilities produced by
both EBM_all and KD methods for this individual do not map the class
labels correctly, maybe because they are different than the rest of the
population. In challenging problems, like the one represented by the
ThinkSlim2 dataset, where personalized non-linear models do not per-
form well, both nomothetic approaches are likely to achieve a slightly
improved performance.

3.5. DISCUSSION
After the detailed presentation of experiments, this section presents a
comprehensive view of the findings, evaluating the performance of id-
iographic and nomothetic models for EMA data modeling, particularly in
predicting individual-level next time-point outcomes. Additionally, the
unique challenges and considerations in EMA modeling are discussed.

3.5.1. IDIOGRAPHIC AND NOMOTHETIC APPROACHES
The idiographic approach demonstrates that personalized models, es-
pecially non-linear ones, can improve predictive accuracy by capturing
unique patterns for each individual. This was particularly evident with
complex ML algorithms, such as EBMs, which incorporate both linear and
non-linear interactions, enhancing performance over traditional linear
models. Among the non-linear models tested, Random Forest showed su-
perior predictive accuracy across various synthetic datasets, while EBMs
showed improvements as sample sizes increased, indicating that they
perform better when more data is available.

In the examined real-world datasets, non-linear models maintained
consistent performance, especially in the AlcoholDrink dataset, where
EBMs and other non-linear methods had narrower and more consistent
AUC score distributions than linear models. In the case of the ThinkSlim2
dataset, evaluating all personalized models was not that straightforward
because their AUC score distributions were marginally improved in non-
linear models. That could be due to the more complex and challenging
structure of this dataset, containing a larger number of individuals as
well as features, but not more data samples compared to the previous
dataset.

Although the nomothetic approach is less tailored than idiographic
models, it brings its own advantages. By training on aggregated data
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across all individuals, these models can capture shared behavioral pat-
terns, potentially making them suitable for individuals with sparse data.
This generalizable approach could be beneficial for future application to
new individuals or those with limited data, as they are not customized for
specific individuals but instead provide insight into general EMA trends.
Initially, we found that using-all-data models would achieve the highest
AUC in the synthetic datasets, as these datasets are expected to lack the
diversity and complexity typically seen in real-world data. This relative
homogeneity allows the aggregated models to capture the underlying
patterns more effectively across all individuals, leading to better over-
all performance. Regarding real-world datasets, applying these nomo-
thetic methods to real-world datasets highlighted additional challenges.
In particular, the more complex ThinkSlim2 dataset showed clearer im-
provements with nomothetic approaches, as Knowledge Distillation led
to the highest AUC score. This improvement is more evident compared
to the AlcoholDrink dataset, where individual models already achieved
relatively high AUC scores (around 0.8), limiting the potential gains from
aggregated data. The complexity and variability within ThinkSlim2 ap-
pear to better showcase the strengths of nomothetic over the idiographic
methods, where general patterns could better reflect individual next
time-point outcomes.

3.5.2. CHALLENGES OF MODELING EMA DATA
Studying the two aforementioned real-world datasets and noticing the
variation in individual results in Figures 3.6 and 3.7 highlights the im-
portance of collecting good-quality EMA data. It is challenging enough
to map the complex nature of psychological behavior to a limited set
of measured variables. EMA data collection is a tedious task, trying to
capture multiple observations on subjective variables, meaning variables
that rely on self-reports and individual perception, during an intensive
period. Thus, EMA datasets may contain unclear or arbitrary responses
due to user interpretation or variability in reporting, as well as missing
values.

Moreover, label annotation is another challenging task in specific
datasets. A clear example is the second examined real-world dataset,
ThinkSlim2. Regarding the HU (healthy vs. unhealthy) output, the cur-
rent goal is to predict any healthy or unhealthy events, by characterizing
the type of food consumed each time. Although the labeling was based
on the Dutch typical diet (as described in [123]), it remains a subjective
task that relies on personal interpretation, making it difficult to describe
the underlying phenomena. This challenge is evident in the poor per-
formance of even the personalized predictive models, shown in Figure
3.6.

Furthermore, missing data is a significant problem of real-world EMA
datasets that cannot be controlled during a study. Even though sev-
eral individuals initially participate in a study, some may not produce
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enough data for analysis (especially if one needs to take into account
the temporal nature of the data). This issue was evident in Figure 3.4
for the AlcoholDrink dataset. Particularly, the sufficiency of data points
depends on each individual’s overall compliance throughout the entire
data collection period, as well as their daily compliance. The most com-
mon approach to dealing with missing data is to delete them while keep-
ing only the complete sets of data. However, this method relies on the
assumption that the missing observations are missing completely at ran-
dom (MCAR), which possibly is not always the case.

3.6. CONCLUSION
This chapter highlights the importance of exploiting the wealth of EMA
data through more advanced ML models compared to linear ones. Non-
linear vs. linear and idiographic vs. nomothetic approaches were inves-
tigated for classifying a target variable at a next time-point on different
datasets.

The results showed great consistency for the idiographic approach,
showing that non-linear models yield an enhanced performance on both
synthetic and real-world data. Subsequently, regarding the nomothetic
approaches, no clear trends were observed in the results of all datasets.
Although the EBM_all method appeared to perform best for synthetic
datasets, that is not the case for real-world datasets. Overall, the pro-
posed knowledge distillation method could be recognized as the most
beneficial method for improving the performance of personalized mod-
els. However, the performance differences between idiographic and
nomothetic approaches were not found to be statistically significant.

In the next chapters, the focus stays on nomothetic approaches, with
the goal of refining the selection of individuals as input to models. Given
the considerable individual variability, it becomes apparent that instead
of integrating all available individuals, focusing on those with similar
characteristics may yield more effective results. Therefore, the question
arises is how we can effectively identify and group similar individuals
through clustering methods. Specifically, in the next chapter, Chapter 4,
clustering based on raw time-series data is explored.
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GROUP-BASED APPROACHES

THROUGH CLUSTERING
TIME-SERIES DATA

While nomothetic approaches with broad data integration offer exten-
sive insights, the diversity between individual data and patterns in large
datasets can sometimes obscure modeling the unique characteristics
of each individual. To address this, strategically selecting meaningful
groups of individuals can help optimize input information, enhancing our
understanding of underlying processes at both individual and group lev-
els. Such grouping can be obtained by clustering. Clustering is an unsu-
pervised machine learning approach used to identify natural groupings
within data based on similarity, without the need for labeled outcomes.

Specifically, this chapter examines the performance of various cluster-
ing approaches for grouping individuals based on the similarity of their
raw time-series data patterns. Clustering is an unsupervised task and the
true underlying groups are generally unknown, evaluating results can be
challenging. Therefore, initially, simulated irregular time-series data, re-
sembling EMA, are used to validate the performance of several methods
under different clustering-related choices, such as the distance metric,
with subsequent application to real EMA data.

Parts of this chapter have been published in

• M. Ntekouli, G. Spanakis, L. Waldorp, and A. Roefs. “Clustering individuals based
on multivariate EMA time-series data”. In: The Annual Meeting of the Psychomet-
ric Society. Springer. 2022, pp. 161–171

• M. Ntekouli, G. Spanakis, L. Waldorp, and A. Roefs. “Evaluating multivariate time-
series clustering using simulated ecological momentary assessment data”. In:
Machine Learning with Applications 14 (2023), p. 100512
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4.1. INTRODUCTION
Building on our exploration of nomothetic approaches from the previous
chapter, where we discussed the integration of data from all available
individuals, the focus shifts to building models on a subset of the whole
population. Particularly, a more advanced strategy of only selecting ho-
mogeneous groups of similar individuals, as input to a model, is essential.
Thus, an important question is whether meaningful groups of similar in-
dividuals could be uncovered, to subsequently facilitate building better
models describing each individual. An answer can be found by grouping
individuals, obtained by clustering.

Clustering algorithms aim to partition unlabeled data into homoge-
neous groups based on similarities among data points. In medical and
psychological research, this type of analysis is highly valuable for mul-
tiple reasons. First, clustering enables a better understanding of shared
characteristics and profiles within subgroups, which is essential for iden-
tifying common traits, behaviors, and potential risk factors among indi-
viduals. Such insights are critical for better understanding mental disor-
ders and revealing the underlying processes that could inform targeted
therapeutic strategies.

Additionally, clustering can support predictive modeling when person-
alized models are infeasible due to data limitations. As discussed in
Chapter 3, in situations with insufficient data collected for a particular
individual, training an effective personalized model may be impossible.
Clustering offers a solution by allowing models to be trained on data from
similar individuals, increasing the data pool and providing more reliable
predictions for each subgroup. Moreover, clustering could help improve
the performance of predictive/forecasting models [126]. By inputting
more similar data, data of the clustering-uncovered similar individuals,
to train a predictive model, the model is likely to produce more accu-
rate outcomes than when using only personalized data. An increased
accuracy contributes to more reliable representations of the overall pro-
cesses.

In the context of EMA, clustering has clear benefits, but also poses
many challenges, as discussed in [124]. Although applying clustering
has already been studied for time-series [127–129], the question remains
whether it is feasible to uncover meaningful clusters when there are no
ground truth labels. Due to the unsupervised nature of the problem and
the number of possible predefined parameters that come with every clus-
tering algorithm, it is quite difficult to evaluate the validity and reliability
of the results. The most significant reason is that there is no definitive
answer about the true or optimal number and composition of groups.
Each method, according to its objective function and parameters, aims
to separate data in the most appropriate way, possibly leading to a differ-
ent separation into groups. Thus, each method’s setup yields a different
grouping by capturing different data aspects or characteristics.

The wide range of available clustering-related choices demands ways
to examine and validate clustering approaches for different scenarios,
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such as heterogeneous datasets. A way to examine these choices is
through simulations, using artificially generated datasets. Therefore, a
large-scale EMA simulation study was conducted. Besides covering var-
ious scenarios regarding datasets’ parameters (e.g., number of individ-
uals, variables, missing data), another advantage of simulations is the
existence of true labels. Labels will facilitate examining whether each
method is reliable and accurate. Thus, this chapter aims to first validate
the performance of several methods under different clustering-related
choices, such as distance metrics, using simulated multivariate time-
series data. The data are created in a way to resemble the complex struc-
ture of a real-world EMA dataset, considering its special characteristics,
such as noisy and irregular data. Subsequently, because ground truth
labels are not always available, or do not even exist, in real-world sce-
narios, the evaluation of the reliability and validity of clustering results
is further investigated through distance-based and distance-free mea-
sures. Finally, some example simulated datasets are examined, showing
in more detail all the necessary steps and comparisons when applying
clustering for real-world applications on EMA data involving clustering
approaches.

Summarizing, this chapter addresses the need to assess and validate
clustering methods for diverse scenarios, particularly with heteroge-
neous datasets, to ensure accurate and reliable groupings of individuals.
This aligns with RQ4, which examines different clustering approaches
based on raw data, and RQ5, which focuses on evaluating the effec-
tiveness of these clustering methods. To achieve this, a large-scale
simulation study was conducted, using artificially generated datasets of
well-shaped patterns, that ideally could resemble emotion-related data.
Finally, the chapter provides a detailed analysis regarding the impact
of different datasets’ parameters on clustering performance, leading to
valuable recommendations for future application of clustering on real-
world EMA data.

4.2. RELATED WORK
Time-series clustering has been studied a lot lately, with some handful
reviews found in [127–129]. Most studies focus on clustering based on
the raw time-series data, exploring different choices for the clustering
method, distance metric and evaluation. Considering that all well-known
clustering algorithms can be adapted to time-series data, these meth-
ods range from traditional machine learning techniques [130], such as k-
means and hierarchical clustering, to neural network-based approaches
[131], such as Autoencoders [132] and Self-Organizing Maps (SOMs)
[133], which learn representations before clustering. Consequently, a
key challenge in time-series clustering lies in selecting the right distance
metric [134]. Thus, most research studies have focused on finding a
good representation of time-series similarities and integrating it into clus-
tering algorithms. Typically, distance measures are based on the concept
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of intensity distance or shape resemblance [135]. Despite the wide ap-
plication of intensity-based measures, such as Euclidean distance, con-
sidering two individuals similar if their variables’ intensity at each time
point is close, these do not take into account shape information. Thus,
two versions of the same pattern shifted in time cannot be considered
similar. To deal with such common issues in time-series, recently, shape-
based distance metrics have been widely applied, trying first to optimally
align the data.

The field of time-series clustering has advanced due to the effective-
ness of shape-based techniques, such as Dynamic Time Warping (DTW),
known for aligning time-series data that may vary in speed. Building
on the success of shape-based clustering, various DTW variations have
been proposed. These include applying restrictions to DTW [136], soft-
ening optimal distance paths using softDTW [137], or enhancing the fo-
cus on local time-series structures with methods like shapeDTW [138].
Other studies exploring different shape-based information ([135, 139,
140]), propose the use of the longest common subsequence (LCSS),
cross-correlation and Fréchet distance, respectively.

However, most studies have handled univariate time-series data. The
added value of the current chapter is the multi-level structure of EMA
data, including several multivariate time-series data [141]. In the case
of multivariate time-series, kernel-based data representations have been
proposed [142]. Kernels based on DTW, such as Global Alignment Kernel
(GAK), were used [137]. Moreover, in [81], another time-series cluster
kernel (TCK) was proposed, based on Gaussian mixture models (GMMs).

Specifically for EMA data, only limited research has been conducted
as far as clustering is concerned. In [66], clustering EMA data into sim-
ilar meaningful groups or clusters is proposed. However, clustering was
not implemented, leaving a gap that is covered in this chapter. Other
than this, a different goal focusing on clustering EMA variables or items
was investigated in [143, 144]. In such cases, clustering was used to
organize an individual’s symptomatology into homogeneous categories
of symptoms, rather than to group different individuals, as in the current
chapter.

4.3. CLUSTERING EMA DATA
This section provides an overview of all the necessary steps for perform-
ing a clustering analysis on EMA data and evaluating the validity and
reliability of the solution. Taking into account the heterogeneity of clus-
tering methods available, this chapter focuses mainly on distance-based
methods. Such methods rely heavily on the way of estimating distances
between the data points of the EMA time-series. Thus, we first explore
the most appropriate distance metrics, followed by clustering algorithms
and evaluation measures.
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4.3.1. DISTANCE METRIC FOR EMA DATA
A thorough understanding of the characteristics of the EMA data can
facilitate the selection of the most appropriate distance metric [140].
These have been already identified in Chapter 2 (Section 2.2.1), thereby
we can move on to the choice of a distance metric. Calculating distances
provides insight into the data elements, in this case, individuals, that
are more similar and need to be grouped together. There are various
distance metrics, each reflecting a different kind of similarity between
time-series [139, 140]. As a result, applying different clustering analyses
to the same dataset can yield markedly different results.

The most traditional distance metric used in clustering tasks is the
Euclidean distance. It calculates the distance between the time-series of
two individuals 1, 2 using the formula defined in the following Equation
4.1, focusing on intensity difference or change. The only requirement is
that both time-series are of the same length (T1 = T2 = T).

dEUC(1, 2) =

√

√

√

√

V
∑



T
∑

t

||1,,t − 2,,t ||2 (4.1)

In the case of EMA data, this requirement is usually violated because
of the occurrence of missing values [145]. Differences in the number of
missing values among individuals result in MTS of varying lengths.

To tackle this issue, another distance metric can be used. Dynamic
Time Warping (DTW) is the most widely used metric for time-series data
[146]. It has also become a state-of-the-art metric because of its high ac-
curacy and its application in the case of variable-length time-series data
[137, 147]. By stretching or compressing time series along the time axis,
DTW aims to find the best shape-based alignment of these [140]. This
way, it also accounts for differences in points’ time intervals due to miss-
ing values, but at the same time, outliers or noise do not significantly
affect it. In practice, this is achieved by comparing all possible align-
ment paths and finally getting the one leading to the minimum distance,
denoted as π∗. An example of the optimal path between time-series is
depicted in Figure 4.1. This is also shown in the following Equation 4.2,
which gives the distance between two time-series 1, 2. In detail, the
alignment path π∗ =< p1, p2, .., pK > consists of K elements, where each
one is represented by an index pair (t, tj) capturing the time-point index
of the series 1 and 2, respectively. Then, the distance Dpk at each
pk = (t, tj) path element is defined by Equation 4.3, using a kernel ϕ
which is the squared Euclidean distance.

DTW(1, 2) =min
π∗

Dπ∗(1, 2)

= min
π∗=<p1,p2,..,pK>

√
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K
∑

k=1

Dpk (1, 2) (4.2)
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Dpk (1, 2) = Dt,tj(1, 2) = D(1,1..V,t , 2,1..V,tj)

= ϕ(1,1..V,t , 2,1..V,tj) + DD (4.3)

where
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Figure 4.1: An example of the DTW alignment between two time-series,
1 and 2, with the optimal alignment path π∗ shown as a
white line. It illustrates how DTW aligns similar patterns,
such as steady (flat) parts and downward slopes, between
the two time-series, which may represent the same variable
measures for two different individuals.

Because of its success, many variations of DTW were developed, such
as subsequence DTW and softDTW [137, 139]. Among these, the Global
Alignment Kernel (GAK) is an interesting extension of softDTW (calcu-
lated in Equation 4.4 below), which also has all inherent advantages of
kernels, see [85].
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Practically, GAK can be used to estimate data similarity according to
the Equation 4.5. Although it still uses a non-positive kernel ϕ, it devel-
ops a "seemingly” positive definite kernel. This is achieved through the
exponentiation of ϕ. Specifically, exponentiation helps transform it into
a form that behaves similarly to a positive definite kernel. As also shown
in Equation 4.5, kGAK incorporates a gamma hyperparameter controlling
the softDTW smoothing, where γ = 2σ2.

soƒ tDTW(1, 2) =soƒ t_mnπDπ(1, 2)

= − γ log
∑

π
e
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γ (4.4)
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4.3.2. ADJUSTING CLUSTERING METHODS FOR EMA DATA
Knowing about the heterogeneity of clustering methods, this chapter is
limited to raw-based algorithms [140]. Their goal is - by using informa-
tion from the raw time-series data - to better separate the most dissimi-
lar data elements, or individuals in our case. Methods belonging to both
hard and soft or fuzzy clustering categories are described.

HARD CLUSTERING

All the well-known hard clustering methods, such as k-means and hi-
erarchical clustering can be used on time-series data [127–129]. Two
main challenges arise: i) how to integrate the appropriate distance mea-
sure, and ii) how to calculate the centroid (center) of a cluster in case
it is needed. While the first is addressed differently for each cluster-
ing method, through their own objective function, regarding the second,
time-series centroid calculation is mainly based on barycenter averag-
ing, as proposed in [148]. Centroid calculation requires averaging time-
series, which, in the case of DTW, is not that straightforward, relying on
shape information.

According to the literature on clustering analysis, the vast majority of
studies use the simplest k-means algorithm, which starts with k random
initial cluster centers and it updates these with respect to the objec-
tive function, which is the clustering error [149]. In other words, it finds
local optimal solutions by minimizing the intra-cluster distances d (e.g.,
dEUC, DTW) between each cluster center cj and the individuals  belong-
ing to this cluster, Cj. Its objective J is summarized in Equation 4.6, show-
ing how the selected distance metric can be incorporated. In the case
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of DTW, where d = DTW, distances are calculated according to Equation
4.2, while the centroid through DTW barycenter averaging [148].

J =
k
∑

j

∑

εCj

d(, cj) (4.6)

However, there are two main disadvantages. The dependence on the
initial cluster centers and the requirement of linearly separable cluster
centers can have a great impact on k-means performance. To address
the second weak point of k-means, kernel k-means was developed. In
principle, kernel k-means is a generalization of the standard k-means
algorithm, where the input data have already been mapped to a higher
feature space through a non-linear kernel [149]. Here, the GAK kernel
kGAK is used to transform the data and calculate their similarities. This is
incorporated into J using two ways. According to the objective function
defined in Equation 4.6, kGAK is input into d after transforming similarity
to distance through d = dGAK = 1 − kGAK , or by aiming to maximizing J,
instead of minimizing, when keeping d = kGAK .

One of the issues with kernels is that we cannot have access to cluster
centers in the original feature space. This is because using a kernel
function, we take advantage of the kernel trick, which means that we get
the inner products of input data in the feature space without explicitly
knowing the transformation ϕ.

Another type of hard-clustering approach is the agglomerative hierar-
chical clustering algorithm (HC). HC is based on the step-wise integra-
tion of single individuals into clusters. The whole process starts with
each individual representing a separate cluster. Then, the most similar
clusters are grouped together until all belong to a single cluster. When
clusters contain multiple elements, each element in one cluster must
be compared with every element in the other cluster. The distance be-
tween clusters is then defined based on the chosen linkage method: sin-
gle linkage (minimum distance), complete linkage (maximum distance),
or average linkage (average distance). The distance scores across all
the grouped clusters can be easily represented graphically by a dendro-
gram. The highest distance indicates the optimal number of clusters.
Again, choosing between dEUC, DTW, kGAK for a distance/similarity met-
ric is possible.

FUZZY CLUSTERING
In the field of psychopathology, grouping individuals using a hard clus-
tering method is not always a realistic scenario, for example, due to co-
morbidity (see Section 1.2.2), individuals could meet the criteria of more
than one diagnosis of a mental disorder. This suggests that it is theoreti-
cally plausible that individuals belong to more than one group [2]. So, a
fuzzy clustering approach might be more appropriate [150].

The most widely used fuzzy algorithm is Fuzzy c-means (FCM) [150,
151]. Similarly to k-means, it tries to optimize the clustering error, with
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respect to cluster centers as well as the membership matrix. At each
iteration, the membership degree is calculated according to the dis-
tance/similarity of each cluster center. As the FCM objective function,
shown in Equation 4.7, is optimized, each individual  gets a higher
membership e,j (controlled by the fuzziness parameter m) to the clus-
ter whose center cj is more similar to its actual TS. All membership de-
grees of each individual belonging to each cluster must be summed to
1. Similarly to k-means, in the case of DTW, d = DTW and J need to be
minimized, whereas for GAK, d = kGAK and the J are maximized.

J =
k
∑

j

∑

εCj

em,jd(, cj) (4.7)

As an alternative to finding centroids between individuals, Fuzzy k-
medoids (FKM) uses the most representative individual of each cluster as
its center. Compared to artificially-created centroids, which are barycen-
ters of time-series [148], in this case, clusters are represented by individ-
uals already existing in the dataset. Practically, in Equation 4.7, instead
of cj, j is used. Regarding the distance metric d, all above mentioned
can be applied.

4.3.3. EVALUATION MEASURES
A key challenge in clustering lies in evaluating the reliability and validity
of the clustering solution. We should acknowledge that as in most cases,
there are no optimal or correct results. Each method, according to its
objective function, parameters and approach to find similarities between
the data points, aims to partition data in the most suitable way. This can
result in different clustering outcomes, each with varying group forma-
tions that may be considered optimal within the context of that specific
method.

To overcome this issue and be able to identify a "good" clustering re-
sult, evaluation is usually based on clustering quality. In general, individ-
uals belonging to the same cluster need to be close (cohesion), and each
cluster needs to be well-separated from the other clusters (separation).
Both cohesion and separation rely on the proximity between individu-
als, which is estimated through a similarity or distance metric. Several
distance-based evaluation measures compare different clustering solu-
tions by taking into account both intra-cluster and inter-cluster similari-
ties [152]. However, most of these, such as Inertia and Davies-Bouldin
Index, are centroid-based measures, meaning that they are strongly de-
pendent on artificially-extracted centroids. Centroids, or barycenters in
MTS, are hard to estimate, especially in irregularly spaced EMA data. This
places an additional error factor in the evaluation procedure. So, mea-
sures based on between-individuals distances are considered the most
appropriate approach.
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A popular distance-based evaluation measure is using Silhouette coef-
ficients [152]. According to the formula in Equation 4.8, for each indi-
vidual  belonging to a cluster C, it compares the average distance ()
across all  individuals belonging to the same cluster (where  = 1..W
and W is the total number of individuals belonging to C) to the distance
b across all z individuals of the closest cluster (where z = 1..Z and Z is
the total number of individuals belonging to the closest to C cluster). To
find the closest cluster, similarities among all individuals in a cluster are
taken into account. So, it’s quite straightforward to interpret the cluster-
ing results. Its values range from −1 to 1, where high values indicate a
good clustering, values close to −1 a bad clustering (inaccurate group-
ing), and values close to 0 a meaningless clustering (random grouping).

S =

∑N


b−
mx(b,)

N
,where (4.8)

 =

∑

εC d(, )

W
and b =

∑

zε closest C d(, z)

Z

An alternative approach to evaluate clusters is through distance-free
methods, where distances across individuals are not taken into account
for their calculation. An example of a promising distance-free metric is
clustering stability [153]. Because of initialization issues, running a clus-
tering algorithm several times on the same dataset may lead to different
results. For instance, there are multiple ways to separate N individu-
als into k clusters, all finally giving different clusters of individuals. It is
apparent that when clusters are very different, clustering should be con-
sidered unstable. In other words, even in cases where the same optimal
number of clusters k is always found, a different separation of individu-
als also affects the quality of clustering. To evaluate clustering stability,
it is needed to run the clustering algorithm several times and compare
the matching of individuals’ cluster assignments. The matching distance
can be calculated using Mutual Information across all pairs of produced
labels. The result represents the clustering stability index [153].

4.4. SIMULATIONS FRAMEWORK
To assess the performance of each clustering method, several simulated
datasets were generated to resemble EMA data. Each MTS dataset was
designed in a controlled way by keeping its parameters (e.g., number of
clusters) in specific ranges. By keeping some parameters constant, we
can check the influence of others in clustering performance. Also, in such
a controlled setup, the true clustering labels of each dataset are known.
These can be exploited in the evaluation process, after comparing them
to the produced partition labels of each method, to check the methods’
validity. However, because in real-world cases the true labels are not
available, other evaluation measures are also examined. These include
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some distance-based measures, such as Silhouette coefficients, as well
as distance-free measures, such as labels’ stability.

4.4.1. SIMULATED SCENARIOS
After carefully considering the special characteristics of an EMA dataset
and its complex structure (given in Section 2.2.1), the simulation proce-
dure was formulated. The simulated datasets were designed to represent
diverse cases of MTS data, resembling real-world EMA scenarios to some
extent. The datasets’ heterogeneity is reflected by the number of param-
eters and the chosen ranges of their values. All changing parameters are
summarized below:

• Number of clusters [2, 3, 4, 5]

• Population size [20, 50, 100, 250]

• Number of features [2, 5, 10]

• Percentage of noisy features [0, 0.2, 0.5, 0.8]

• Percentage of missing data [0, 0.1, 0.2]

For example, the number of investigated clusters was 2,3,4 and 5.
Thus, each simulated dataset is eventually characterized by the combi-
nation of all chosen parameters’ values.

During the generation process of each MTS dataset, first, the values for
the parameters were all set, regarding the number of clusters, popula-
tion size (total number of individuals), number of features (or variables)
and percentage of noisy features and missing data. Then, individuals
were equally split into the defined number of clusters. For example, if
the population size is set to 20 and the number of clusters to 2, there will
be 10 individuals in each cluster. Afterwards, each cluster was formed
by selecting all feature patterns (MTS) of all cluster’s individuals, that is
the equations used to generate each time-series feature. This level of
complexity occurs because individuals need to be represented by time-
series of high dimensionality, but also be part of distinct clusters. Thus,
the MTS of an individual feature space must be similar for all in the same
cluster, meaning that they are all characterized by the same random
combination of features (or time-series patterns). Then, to differenti-
ate individuals within a cluster, auto-correlated Gaussian noise (distribu-
tion’s variance is 0.2) was added to each of them. To illustrate this, Figure
4.2a shows an example of 3 clusters, each including 5 individuals char-
acterized by 1 feature/variable. On the contrary, separate clusters were
characterized by a different combination of features. In other words,
all features were different, generated by different equations. Regarding
these equations, they were formed in a way to provide some particular or
basic patterns for time-series, plausible to resembling emotional behav-
ior, captured in EMA items. The basic patterns are represented by a pool
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of trends, including linear and non-linear trends, as well-expected in real
EMA data. For instance, these included upwards, downwards, constant
as well as sinusoidal with different periods and phases, or combinations
of these [154], and generated for 100 time-points. Figure 4.2b shows
an example of some of the basic patterns used, while the rest were cre-
ated in a similar way. Overall, the combination of features was randomly
selected, but controlled in a way that all individuals of the same cluster
had the same combination of features, which was different from other
clusters.

As already mentioned, each time-series feature was generated for 100
time-points. However, following the fact that missing points typically oc-
cur in real-world EMA data, the percentage of missing data also varied
across the simulated datasets. By changing the maximum percentage of
missing points, each individual was represented by a different number of
time-points, regardless of the cluster they belonged. Each time, the num-
ber was randomly selected with respect to the maximum percentage of
missing data. For example, when examining a maximum percentage of
missing data of 20%, Pm = 0.2, all individuals’ data points were selected
from a range of [80,100].

Other parameters that were investigated are the total number of fea-
tures (2,5,and 10) and the percentage of noisy features Ln, checking for
0,0.2,0.5,and 0.8. The latter parameter indicates the percentage of to-
tal features, which are not generated following one of the basic patterns
and are just drawn from a Gaussian distribution. In such a setup, the ba-
sic patterns are considered non-noisy features. For instance, in the case
of the combination of 2 clusters, 10 features and Ln = 0.8 or 80% noisy
features, for each cluster, 2 features are selected from the pool of basic
patterns, while 8 are random Gaussian noise. These 2 non-noisy basic
features selected for the 2 clusters must always be different in order to
better distinguish the clusters.

Overall, for each dataset (combination of different parameters exam-
ined), the generation process is repeated 10 times, leading to 10 differ-
ent example datasets. This is necessary to ensure that clustering is not
affected by any specific feature combination. Therefore, 10 examples of
each dataset lead to a total number of 5760 datasets, examined within
each configuration with a varying percentage of missing data points.

4.5. SIMULATIONS RESULTS
To assess the performance of the above-described methods along with
the different clustering choices1, these were tested using the generated
simulated datasets. All clustering-related choices that need to be ex-
amined as well as the ways of their evaluation are summarized in Table
4.1.

Methods that rely on their initial cluster centroid definition, such as km,

1All distance metrics were applied using the toolbox [147].
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Figure 4.2: Examples of the generated simulation patterns used to create
synthetic time-series data for clustering evaluation.

Table 4.1: All the examined clustering parameters regarding methods,
distance metric and evaluation.

Method Distance Metric k Evaluation

k-means (km) DTW 2 True Labels (AMI)

Fuzzy c-means (FCM) GAK 3 Silhouette

Fuzzy k-medoids (FKM) 4 Stability

Hierarchical (HC) 5

6

FCM, and FKM are applied 10 times to each dataset. At each iteration,
initial cluster centroids are randomly generated and updated according
to each algorithm. Then, the derived 10 sets of labels are used to cal-
culate stability, while the average result for Adjusted Mutual Information
(AMI) with the true labels and Silhouette coefficients is recorded. For HC
methods, only individual distances are taken into account. So, they are
not dependent on any initialization, and stability does not need to be
calculated.

All methods are applied to every simulated dataset. A simulated
dataset is characterized by a unique combination of all the controlled
parameters with varying values (see Section 4.4.1). For every combina-
tion of parameters-values, we generate 10 different example datasets
to better represent each combination because of the random selection
of features in a cluster. For each example dataset, the patterns of a clus-
ter’s features (2,5,or 10) are randomly chosen from the pool of basic
feature shapes.
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4.5.1. SUMMARY RESULTS
EVALUATION SUMMARY USING TRUE LABELS

First, the overall performance of all clustering methods is tested against
the true labels of each dataset. The AMI between the true and predicted
labels is calculated and depicted in Figure 4.3. This figure is divided into
4 subplots, each representing the performance of all methods’ perfor-
mance on datasets with a different number of true clusters (2,3,4,5).
Note that all different datasets are summarized in this plot. For example,
there is no distinction between datasets with and without noisy features.

In each subplot, the AMI distributions corresponding to true k values
(equal to the number of true clusters) show the highest median AMI
score across all methods. Moreover, the overall distribution of these true
k value is elevated compared to different k values. By zooming in on
the first subplot, all statistical properties of the blue distributions (k = 2)
are the highest for all methods. However, the color of a distribution may
not always be visible, if the distribution is flat (minimal spread). In some
cases, it can be even represented by a line with some outliers. For ex-
ample, this pattern is mostly observed for FKMGAK and HCGAK , indicating
their robustness. However, the existence of some outliers is highlighted
in all subplots, showing cases where performance decreases. Outliers
with low values are prevalent in methods where the DTW distance met-
ric is used (as opposed to kernel-based methods). As it will be proven
later in the analysis, lower clustering performance is connected to a high
proportion of noisy features when non-kernel methods are applied.

Having access to the true underlying clusters gives us the opportu-
nity to actually validate the examined clustering methods. Therefore,
through simulations, comparing the predicted and true labels of individ-
uals led to the confirmation of most methods’ validity. This means that in
a simulated scenario, each method could not only identify the right num-
ber of clusters, but also the correct partitioning of individuals between
clusters. This is important information for validating the performance
of all clustering methods and the robustness in cases where values are
close to the highest possible score of 1. However, this is not the case
when a wide range in the AMI distribution or even some outliers are ob-
served. More specifically, there are methods, such as FCMDTW and FKMd,
whose AMI distributions are quite spread, deviating a lot from 1. These
are, then, considered less robust methods, not being capable of always
identifying the correct separation of individuals into clusters. Moreover, it
should be noted that there are some outlier examples where DTW-based
clustering methods could not uncover the true clusters and need to be
investigated. Further analysis should be then performed on the influence
that the datasets’ changing parameters might have.

EVALUATION SUMMARY USING SILHOUETTE ANALYSIS

Since ground-truth labels are not usually available in real-world datasets,
different evaluation measures need to be additionally assessed for their
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ability to identify the correct k cluster value. Silhouette coefficient and
stability are two widely used alternative measures to evaluate clustering.
Their results are shown in Figures 4.4 and 4.5, respectively. Again, each
figure has 4 subplots, with each subplot reflecting the datasets with a
specific true number of clusters (2,3,4,5 clusters).

For Silhouette analysis, the distributions of the coefficients are in-
creased on average when the value of k is equal to the true number of
clusters of the examined dataset. This means that even without having
access to the true labels, Silhouette analyses can also provide evidence
regarding the correct value of k for all clustering methods. However,
the Silhouette coefficients are not as high as the AMI values, compared
to when true labels were known, which is expected because they rely
on internal data structure, without reference to the true labels. If meth-
ods using DTW distance are applied, distributions are quite widespread,
reaching an average value of around 0.6 − 0.7 and a maximum of 0.8.
Such values are considered relatively average, if compared to the high-
est possible value, which is 1. So, even without reaching the highest
score, by comparing the Silhouette coefficients for different k values, it
results to the right number of clusters.

Interestingly, it is observed that the boxplots of the kernel-based meth-
ods are much higher (average 0.8− 0.9) with a smaller range, compared
to the non-kernel methods. After further investigation, the lower val-
ues of non-kernel methods are derived from datasets with a high propor-
tion of noisy features. These values can be very low in some datasets,
reaching close to zero. This effect also confirms the conclusion of Figure
4.3, where kernel-based methods led to higher AMI scores and efficiently
grouped individuals in all possible scenarios. Nevertheless, it is not yet
apparent if and why a kernel method clearly outperforms the others,
which needs further investigation.

When considering a distance-free approach of evaluation, the distri-
butions of the stability indexes also seem powerful enough to identify
the true underlying labels of different datasets. Similar to the previous
plots, all statistical properties of the distributions are higher when the
correct value of k is picked, also confirmed by the true number of clus-
ters. Compared to the Silhouette distributions, stability can reach higher
values, averagely close to 1 when the true k is used. So, stability can
be applied complementary to finding the best k value for all methods. It
is also clear that FKMGAK achieves in all cases the most stable cluster-
ing results. Note that HC methods are not part of this plot, as they are
not dependent on any initialization parameters, and therefore produce
a single partitioning. The HC methods are only based on individuals’
distances that can be calculated before applying the algorithm.

IMPACT OF PARAMETERS: NOISE

As a next step, the impact of different dataset parameters is investi-
gated, such as the proportion of noisy features, number of features and
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missing data as well as population size. Figure 4.6 shows the impact of
the proportion or level of noisy features (Ln set to 0,0.2,0.5 or 0.8) on
clustering performance, as measured by AMI. The presented figure is a
bit more complex than before, where rows and columns represent each
of the clustering methods and the true number of clusters, respectively.
To limit this figure’s complexity, only the cases of 2 and 3 true clusters
are shown. As shown in Figure 4.6, AMI decreases as the proportion
of noisy features increases, with the largest difference in datasets with
Ln = 0.8. For example, when examining the red boxplots (Ln = 0.8) of
HCDTW, AMI reaches values close to zero, showing poor performance, but
also the distinction between the values of the k parameter is not clear.
Similar patterns appear for kmDTW, FCM, and FKMDTW.

Contrary to Ln = 0.8, the difference gap is smaller for Ln = 0.5, and
is negligible for 0.2 noisy features. Interestingly, in the case of kernel-
based methods, the performance drop is not that significant, even for
Ln = 0.8. This indicates that existing relationships, like similarities, be-
tween individuals in very noisy datasets can be more reliably extracted
after applying a GAK kernel, than just using DTW distances.

Similarly, when checking the impact on Silhouette and Stability, the
same patterns are apparent (see Figures 4.18 and 4.19 in the Supple-
mentary Material of this chapter). Again, the gradual decrease in both
measures is obvious as the proportion of noisy features increases, with
the most significant drop visible at Ln = 0.8. However, the range of the
distributions is different between kernel and non-kernel methods, where
the latter ones are more widespread and averagely decreased.

All in all, Silhouette analysis is capable of efficiently retrieving the true
number of clusters of all datasets when using kernel methods, even with
a high proportion of noisy features. Similar effects are also observed for
clustering evaluation through stability.

IMPACT OF PARAMETERS: NUMBER OF VARIABLES

Having already identified the irregularities when dealing with datasets
with high proportions of noisy features, we further focus on examining
cases with noise Ln = 0.8. For these datasets, the influence of the num-
ber of variables on clustering performance is investigated using Silhou-
ette and Stability, presented in Figures 4.7 and 4.8, respectively. Due to
space limitations, this analysis aims to check if the potential impact can
be captured in case there is no access to the true labels (impact on AMI
can be similarly checked). Both figures present multiple subplots, sep-
arating all methods and the number of true clusters. Once more, only
the GAK kernel-based methods seem to show a good performance after
finding the right number of clusters. Additionally, when the number of
variables is higher, 10 compared to 5, clustering performance appears
slightly increased for the majority of the presented cases. For kernel-
based methods, this could be interpreted as a need to transform high-
dimensional data, because an alternative data representation might bet-
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Figure 4.6: Influence of noise Ln (represented by a different color) on
the overall performance of all clustering methods assessed
through AMI. There are 7 by 2 subplots, where the rows rep-
resent each of the clustering methods, while the columns the
true number of clusters (2 and 3 clusters are shown).

ter more capture its patterns. However, the fact that this also holds for
non-kernel methods makes this interpretation a bit more complicated,
because no kernel transformation is involved. Therefore, it is possible
that the effect is not due to the high number of features but to another
reason, such as the number of meaningful ones.

Furthermore, in both plots, but more clearly when considering Silhou-
ette coefficients, non-kernel methods tend to consistently group individ-
uals into 2 clusters. This occurs even when more clusters may be neces-
sary to accurately represent the true underlying patterns, but only 2 are
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Figure 4.7: Ln = 0.8: Impact of variables’ number on the overall perfor-
mance of all clustering methods assessed through Silhouette.
There are 7 by 2 subplots, where the rows represent each of
the clustering methods, while the columns the true number
of clusters (2 and 3 clusters are shown).

commonly extracted.

IMPACT OF PARAMETERS: MISSING DATA

Similarly, the impact of the missing data percentage of a dataset was ex-
plored. Given that in real-world EMA datasets, irregular time series with
missing values commonly arise, it was crucial to investigate its effect on
clustering performance. Clustering validity was first tested using AMI,
but also relative to noise, as proven quite an influential factor. For low
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Figure 4.8: Ln = 0.8: Impact of variables’ number on the overall perfor-
mance of all clustering methods assessed through Stability.
There are 3 by 2 subplots, where the rows represent each of
the clustering methods, while the columns the true number
of clusters (2 and 3 clusters are shown).

proportions of noise, the presence of missing data did not affect clus-
tering performance, only a slight drop was observed for Pm = 0.2, in a
few cases using the GAK distance metric. However, when Ln = 0.8, the
impact is depicted in Figure 4.9. As demonstrated before, noise did not
significantly affect the kernel-based methods. This is confirmed again by
showing that the right clusters are mostly uncovered, and always outper-
forming the DTW-based methods. However, the effect of missing data is
not negligible. While, for Pm = 0 or Pm = 0.1, the AMI scores are close
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to 1, when Pm = 0.2, the scores drop to 0.8 for both FKMGAK and HCGAK ,
and even lower to 0.6 for k-means. Thus, Pm = 0.2 along with high noise
proportion starts affecting the good performance of the GAK distance
metric. However, this refers to the average AMI score across multiple
datasets, and as further analyzed, this score is heavily influenced by the
dataset itself and the particular points that were excluded in each one.
For instance, in case a lot of data points, which were randomly removed,
were important to characterize its feature pattern, then it naturally gets
more challenging to discover its true cluster.

Nevertheless, for non-kernel-based clustering methods, noise had
been already found to have a significant influence. Here, it is observed
that this influence is apparent even when Pm = 0, meaning that there
are no missing values in data, where reaches a maximum score of 0.8.
Consequently, a stronger decrease was expected for Pm = 0.2. Never-
theless, the opposite trend was found. In other words, AMI was equal
or higher in cases with more missing data, for example, when Pm = 0.2
compared to Pm = 0.1. This was probably achieved because removing
data points from a noisy feature does not take any useful information
out, but it may become less noisy. However, in all these cases, even the
improved ones, the yielded scores were not higher than 0.5, so still the
clustering is not considered successful.

Clustering performance should also be assessed through Silhouette co-
efficients and Stability to check whether the same patterns could be de-
rived without having access to the true labels. The results of the Silhou-
ette analysis are given in Figure 4.20 of the Supplementary Material of
this chapter. The true clusters can be always uncovered in case of kernel-
based methods, with scores decreasing as Pm increases, but not lower
than 0.5. Likewise, stability analysis yields similar findings. Therefore,
kernel-based clustering methods can reliably find true clustering even in
the case of noisy datasets with irregular time-series. As expected, in-
creasing the percentage of missing points affects the performance, but
depends a lot on which data points are removed along with their signifi-
cance in characterizing the feature pattern.

IMPACT OF PARAMETERS: POPULATION SIZE

Finally, we experimented with the number of participants in the dataset.
Based on all evaluation measures, all methods seem to accurately per-
form on average, without a clear distinction between the varying popu-
lation sizes. The same patterns appear in boxplots of datasets with 20 or
250 individuals. Therefore, the total number of individuals in a dataset
does not influence clustering performance. Detailed figures presenting
the influence of population size on clustering performance are provided
in the Supplementary Material of this chapter (Figure 4.21).
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Figure 4.9: Influence of the percentage of missing data points Pm (rep-
resented by a different color) on the overall performance of
all clustering methods assessed through AMI. There are 7 by
2 subplots, where the rows represent each of the clustering
methods, while the columns the true number of clusters (2
and 3 clusters are shown).

4.5.2. APPLICATION ON A SIMULATED SCENARIO
We further experimented with some particular example datasets to an-
alyze in more detail how the above-examined evaluation measures can
be used when dealing with a new dataset, but also to highlight the differ-
ences in results between some clustering choices. As described in Table
4.2, the focus was on two simulated scenarios without missing data, cov-
ering different proportions of noise, Ln = 0 and Ln = 0.8. The selected
example datasets represent a case of 20 individuals belonging to 4 clus-
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ters. Each individual was generated having 10 features, with varying
percentages of non-noisy features. Relevant to our analysis, in these ex-
amples, 20 individuals are sequentially split into clusters, that is, the first
5 were designed to belong to the first cluster, the next 5 to the second
cluster, etc.

Table 4.2: The characteristics of the two simulated scenarios examined
for Section 4.5.2.

Clusters Population Features Noisy Features

Scenario 1 4 20 10 0

Scenario 2 4 20 10 0.8
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Figure 4.10: DTW distance matrices across all 20 individuals, for different
noise levels, Ln = 0 and Ln = 0.8.
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Figure 4.11: GAK similarity matrices across all 20 individuals, for different
noise levels, Ln = 0 and Ln = 0.8.

The first step is choosing the most appropriate distance metric. Here,
both DTW and GAK are separately tested. It is important to emphasize
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that DTW estimates distances, whereas GAK similarities. The produced
distance and similarity matrices of all 20 individuals for DTW and GAK are
shown in Figures 4.10 and 4.11, respectively. Both result in 20 by 20 sym-
metric matrices. Across all pairs of individuals, the distance/similarity
values reflect which individuals are close to each other. In other words,
small distances or high similarity reflect members of the same cluster.

At first glance, although 3 plots mostly follow a specific pattern un-
covering the 4 clusters, a peculiar pattern, resembling randomness,
emerges for DTW and high noise (Ln = 0.8). This observation likely
explains the poor performance of non-kernel methods in the summary
results. Interestingly, the GAK kernel does not seem to be affected a
lot by high noise. Only within-cluster similarities slightly decrease, and
between-cluster similarities slightly increase as the proportion of noisy
features increases.

Subsequently, all different clustering methods are applied to the ex-
amined datasets, and clustering results are evaluated. The performance
evaluation is conducted in the same three ways for both datasets, as il-
lustrated in Figures 4.12 and 4.13. As shown in the summary results, for
Ln = 0, all methods are able to find the correct number of clusters. This
is confirmed by all three evaluation measures. Only in the case of Sil-
houette coefficients, non-kernel clustering methods lead to lower values
compared to kernel-based methods. However, these lower coefficients
reach a value close to 0.7 for k = 4, which still indicates relatively strong
clustering performance, given that the maximum possible value is 1.
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Figure 4.12: Ln = 0: Clustering evaluation through true labels, Silhouette
scores and Stability index.

Additionally, some of these measures, such as Silhouette coefficients,
can provide further insights into clustering quality. According to the
Equation 4.8, the total Silhouette coefficient is estimated as an aver-
age of all individuals’ Silhouette coefficients. Therefore, the Silhouette
coefficients of each cluster can be particularly informative. This can
verify whether a clustering analysis has produced a set of meaningful
clusters. For example, the presence of clusters with low Silhouette coeffi-
cients (e.g., lower than 0.2) suggests that some clusters may not be well-
separated, indicating the need to adjust the number of clusters. Figure
4.14a illustrates the Silhouette coefficients of each method, calculated
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Figure 4.13: Ln = 0.8: Clustering evaluation through true labels, Silhou-
ette scores and Stability index.

across various methods and different numbers of cluster k. Each method
is represented by a distinct color, and the same number of points (cor-
responding to k) appears for each method. As k increases, it becomes
evident that the coefficients for some clusters begin to drop, approach-
ing 0. This trend indicates that, beyond k = 5, additional clusters do
not add meaningful structure and instead result in poorly defined clus-
ters. These findings strongly suggest that a smaller number of clusters
is more appropriate for capturing the underlying structure of the data.

Furthermore, regarding stability, another aspect that could be ana-
lyzed is the actual number of derived clusters for every value of the k
parameter. Even though the input of a clustering method is k, this works
as an upper bound for some algorithms, such as kmGAK . Therefore, it
does not mean that it always extracts k clusters, but if necessary, it
could also extract fewer than k clusters. In Figure 4.14b, the distribution
of the total number of clusters is examined across 10 iterations for all
methods and input values of k. The different colors represent the num-
ber of total counts. The results reveal that the algorithm consistently ex-
tracts the requested number of clusters for lower values of k. However,
for higher values (k = 5 and k = 6) the algorithm occasionally produces
fewer clusters than specified. For instance, with k = 6, the algorithm
most frequently extracts 3 or 4 clusters. These findings suggest that the
algorithm naturally adjusts to the underlying structure of the data.

The same analysis can be conducted for the second dataset with Ln =
0.8. The three initially introduced evaluation measures are presented in
Figure 4.13, while the two additional aspects of Silhouette and Stability
are shown in Figures 4.15a and 4.15b, respectively. When considering
the first three measures, only the kernel-based clustering methods found
the correct number of clusters. Although the AMI values are close to 1,
the obtained Silhouette coefficients are in the range of 0.5 − 0.7, with
FKMGAK and HCGAK achieving the highest values. Similarly, kmDTW and
FKMGAK reveal the highest stability, where the latter one reaches 1 for
k = 4.

Regarding the second set of evaluation measures, clusters’ Silhouette
analysis and Stability-derived counts are shown in Figures 4.15a and
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Figure 4.14: Ln = 0: (a) Clustering evaluation through Silhouette coeffi-
cients for individual clusters, examined for various cluster-
ing methods and number of clusters k. (b) Clustering eval-
uation through the distribution of the actual number of clus-
ters derived across 10 iterations for different values of k.
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Figure 4.15: Ln = 0.8: (a) Clustering evaluation through Silhouette coef-
ficients for individual clusters, examined for various cluster-
ing methods and number of clusters k. (b) Clustering eval-
uation through the distribution of the actual number of clus-
ters derived across 10 iterations for different values of k.

4.15b, respectively. Compared to Ln = 0, it is obvious that clusters’
Silhouette coefficients start revealing meaningless clusters from k = 2
for some methods. By checking the colors of those clusters, we observe
that they were produced by non-kernel methods. Clusters’ coefficients
of kernel-based methods start decreasing after setting k > 4. Finally,
regarding the actual counts of clusters across iterations of each method,
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no useful information can be extracted. Although this measure could
not confirm the true number of clusters, all other figures verified that
kernel-based methods can efficiently uncover the true underlying groups
in data.

4.5.3. APPLICATION ON A REAL-WORLD DATASET: NSMD
In this section, an additional real-world dataset is utilized to demonstrate
all the clustering-related decisions discussed in the previous sections.
The dataset used is the NSMD dataset, a real-world dataset described in
Chapter 2, Section 2.6. Clustering is performed on the 187 individuals
based on their 12-variable time-series. Following, clustering results are
evaluated by assessing both cluster quality and stability.

First, clustering is performed using all 7 algorithms, k-means (kmDTW,
kmGAK), FCM (FCMDTW), FKM (FKMDTW, FKMGAK), and HC (HCDTW,
HCGAK). Both distance metrics, DTW and GAK, are examined, except
for FCM where only the DTW is used. This is because extracting cluster
centroids in the original dimensions becomes challenging with kernel-
based methods due to kernalization. The γ hyperparameter of the GAK
kernel relies on the given data and it is calculated as the average of
the median of all distances [85]. Then, the groups derived from each
clustering method are evaluated in terms of the Silhouette coefficient
and stability, as the true number of underlying clusters is not known.
This evaluation helps determine both the optimal number of clusters and
the quality of the clusters obtained.

Regarding the Silhouette analysis, the overall results are presented in
Figure 4.16a, while the maximum values are highlighted in Figure 4.16b.
Notably, the k-means method with a GAK kernel, extracting 3 clusters,
gives the highest score at 0.21. This score remains quite constant across
different clustering repetitions, potentially also leading to high stability.
A similar Silhouette score is produced by HCDTW with k = 2. Following
these, the next best options are given by FKMGAK and HCGAK , both using
a small number of clusters. Therefore, these findings suggest that when
kernel-based methods are utilized, the quality of the retrieved clusters
improves, showing that kernel transformations are necessary to better
represent the complex structure of EMA data.

Apart from these, the remaining clustering methods show lower Sil-
houette scores, with FCMDTW and FKMDTW approaching zero. Very low
or negative Silhouette scores are typically interpreted as not-so-meaning
clustering results. In such cases, individuals within clusters may not be
significantly closer to each other than to individuals in other clusters,
reducing the interpretability of these clustering solutions.

Next, we assess the stability of the clustering-derived groups by ex-
amining the consistency of the Silhouette scores as well as the Stability
Index. Stability is often questioned because of the random initialization
effect in many clustering algorithms. Particularly, the Silhouette scores
distribution and the Stability index were computed across 10 iterations
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Figure 4.16: Overall clustering evaluation for all methods through Silhou-
ette scores: (a) Distribution of Silhouette scores over several
iterations. (b) Maximum Silhouette scores.

(or repetitions) of each algorithm, as presented in Figures 4.16a and 4.17,
respectively. For this analysis, HCDTW was not included as it is indepen-
dent of initialization issues, while for HCGAK , only the parameter γ was
varied. The impact of this variation proved negligible, with stability con-
sistently close to 1.
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Figure 4.17: Overall clustering evaluation for all methods: Stability Index.

Besides HC, the most stable clustering result is produced by FKM,
whereas the least stable by FCMDTW and kmDTW. A high Stability index
shows that group assignments remain relatively consistent across repe-
titions. An interesting case is kmGAK with k = 3, which achieves a score
approximating 0.92, which is quite higher compared to the other meth-
ods. As already discussed, this finding is also reflected in Figure 4.16a,
giving the highest Silhouette score. Given the agreement between both
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evaluation measures, this particular grouping is further investigated in
Chapters 6 and 7 of this dissertation.

Summarizing, from a methodological perspective, a variety of algo-
rithmic choices, distance metrics, and evaluation methods are available,
each leading to a different result. The variety in these choices under-
scores the inherent flexibility and complexity in clustering analysis. While
it is important that a consistent identification of the optimal number of
clusters across methods is identified, this does not necessarily imply
that individuals are assigned to groups in the same way. This variabil-
ity arises because different clustering methods and distance metrics can
interpret the structure and similarities within the data differently, lead-
ing to unique group assignments for the same dataset. This is further
reflected in the current evaluation when varying stability results are ob-
tained. Additionally, consistency between different evaluation measures,
such as the Stability Index and Silhouette score, is crucial. An agreement
between these metrics provides greater confidence in the reliability of
the clustering result regarding the grouping of individuals.

4.6. DISCUSSION - RECOMMENDATIONS
Based on our experiments, we can derive conclusions and make prelim-
inary recommendations for choosing a clustering method when group-
ing individuals in EMA studies. Although our analysis is based on artifi-
cially generated datasets, which are less complex than real-world EMA
datasets, they can still give valuable insights for real-world applications
and future studies, since the scenarios explored were very extensive.

4.6.1. DIFFERENCE IN PERFORMANCE OF CLUSTERING METHODS
Through simulated datasets, this chapter aimed to assess the perfor-
mance of several clustering methods using different distance metrics
and other parameters. First, clustering performance was validated
against predefined (true) labels. Overall, a good clustering performance
was confirmed for all methods when there was no or a low level of
noise in the data, in terms of the percentage of noisy features, also in
the presence of missing data. However, when the proportion of noise
increased to 0.8, results showed substantial differences between clus-
tering methods. Although GAK kernel-based methods still yielded good
results, performance significantly dropped for non-kernel methods, that
is, methods that are based on DTW distance. At high noise levels, in-
creasing the percentage of missing data also impacted performance,
slightly decreasing the results of kernel methods. Next, similar pat-
terns of results were obtained when examining clustering performance
through Silhouette coefficients and Stability.

No significant differences in performance were observed between the
various kernel-based methods. According to all three evaluation mea-
sures, the results of k-means were only slightly decreased compared to
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the other FKM and HC. Between the last two, no distinction was observed,
even if one belongs to the hard clustering methods and the other to the
soft methods.

4.6.2. CHOOSING THE MOST APPROPRIATE CLUSTERING-RELATED
PARAMETERS

As already stated, choosing the most appropriate clustering hyperparam-
eters plays a key role as they can heavily affect clustering performance.
According to the findings of our analysis, some preliminary directions can
be set to support more efficient parameter selection.

Because clustering is an unsupervised task, it is necessary to com-
pare the performance of different clustering methods to opt for the most
suitable approach for a particular dataset. It is common for a cluster-
ing method not to be universally applicable to all types of datasets.
So, a thorough comparison is necessary between different methods for
datasets with different characteristics. To evaluate all these, Silhouette
and Stability analysis can be of great value to help identifying some "op-
timal" choices. Therefore, each combination of methods and parameters
should be compared and assessed based on both evaluation measures
- Silhouette and Stability analyses. Although the best-case scenario is
for both measures to agree, there are datasets for which the two "best"
choices can differ. Then, the actual Silhouette and Stability values should
be examined, because their level also plays an important role. Even if
these evaluation measures agree on a specific value of k, the retrieved
scores need to be quite high to lead to a reasonable grouping. For ex-
ample, a clustering whose Silhouette coefficient is close to 0 reflects a
not-so-meaningful grouping. However, according to the simulation re-
sults, Silhouette cannot reach values higher than 0.7 − 0.8 if datasets
include a substantial number of noisy features, or even lower (averagely
around 0.5) in case of 20% missing data points.

4.6.3. EFfiCIENT APPROACHES TO REAL-WORLD EMA DATASETS
Real-world EMA datasets are complex-structured data, nesting temporal
information of multiple items within each individual. Although this was
captured to some extent in simulated datasets, the patterns of the items
(features) collected are not expected to have distinctly clear shapes. It is
more common for the real EMA items to more closely resemble the noisy
features examined in our simulations. That is, based on our simulation
design, a real-world EMA dataset should be represented by a simulation
dataset with a high proportion of noisy features. Moreover, missing data
is a prevalent issue in real-world datasets. Through data pre-processing,
individuals’ compliance is always checked so that those with a high per-
centage of missing points are omitted. However, small percentages are
usually acceptable. Therefore, irregular time-series data, having up to
20% missing data, were also thoroughly explored.
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In similar investigated scenarios, a GAK kernel transformation appears
to be a promising first step when cluster-analyzing EMA data. This type of
data transformation is needed to better represent the data structure that
can be exploited by clustering methods at a following step. Therefore,
GAK kernel-based clustering methods are considered the most appropri-
ate approach to partition the EMA data of several individuals.

4.7. CONCLUSION
This chapter investigates various clustering methods and clustering-
related parameters by analyzing data from simulations. The simulations
cover different scenarios that mimic real-world cases, involving multiple
individuals, noisy features and/or irregular time-series data. Experiments
showed that all methods achieved a good performance when applied to
datasets with few or no noisy features. However, for datasets containing
80% noisy features, with or without missing data, only GAK kernel-based
methods provided a good clustering result. This result indicates that
employing alternative representations for EMA data has great potential
to better capture its unique characteristics and underlying patterns.

Moreover, when the true clusters are unknown, clustering evaluation
through Silhouette coefficients and stability provides valuable insights
into the effectiveness and consistency of the examined clustering ap-
proaches. Nevertheless, it is important to note that in most cases there
is no definitive answer regarding the best clustering method, as different
methods aim to achieve effective groupings based on their respective
algorithmic processes. Therefore, it remains crucial to deliberately pick
the appropriate clustering method, parameters and distance metric for
every new dataset and clustering problem.

In the next chapter, the focus remains on clustering approaches, where
we further investigate alternative methodologies. Beyond clustering ap-
plied directly to raw time-series data, clustering can rely on various indi-
vidual information or characteristics. For instance, key characteristics of
individuals could derive from their personalized models. Specifically, uti-
lizing the underlying models to represent each individual allows for clus-
tering based on the parameters of these models rather than the raw data
itself. This approach abstracts the data into essential model parameters,
reducing sparsity and enabling the identification of groups that are ho-
mogeneous in their underlying statistical properties. This is particularly
useful for complex and dynamic datasets, such as EMA. Moreover, it is
interesting to investigate how clustering-derived group-based informa-
tion could be further exploited in the modeling process. It is likely that
clustering information could help in improving the performance of per-
sonalized models by providing insights regarding specific group charac-
teristics. Thus, Chapter 5 will further evaluate clustering efficacy within
the context of a downstream predictive/forecasting task.
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Figure 4.18: Influence of noise Ln (represented by a different color) on
the overall performance of all clustering methods assessed
through Silhouette coefficients. There are 7 by 4 subplots,
where the rows represent each of the clustering methods,
while the columns are the true number of clusters.
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Figure 4.19: Influence of noise Ln (represented by a different color) on
the overall performance of all clustering methods assessed
through Stability. There are 5 by 4 subplots, where the rows
represent each of the clustering methods, and the columns
the true number of clusters.
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Figure 4.20: Influence of maximum percentage of missing data Pm (rep-
resented by a different color) on the overall performance of
all clustering methods assessed through Silhouette coeffi-
cients. There are 5 by 4 subplots, where the rows represent
each of the clustering methods, and the columns the true
number of clusters.
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Figure 4.21: Influence of population (represented by a different color) on
the overall performance of all clustering methods assessed
through Stability. There are 7 by 4 subplots, where the rows
represent each of the clustering methods, while the columns
are the true number of clusters.





5
GROUP-BASED APPROACHES

THROUGH MODEL-BASED
CLUSTERING

Having established the potential of clustering individuals using EMA
data to gain a better understanding of mental disorders, particularly re-
garding individuals’ commonalities and differences, this chapter focuses
on using a different representation basis for clustering. Beyond apply-
ing clustering based on raw time-series data, this can be investigated
using alternative sources of information, such as model-derived informa-
tion, that capture distinct aspects of individuals’ profiles. More specif-
ically, model-based clustering approaches utilizing information derived
from personalized models, such as model parameters, to represent each
individual are examined to group the most similar individuals. Subse-
quently, the clustering results are assessed through group-based predic-
tive models. It is hypothesized that supplementing personalized or indi-
vidual models with additional information on similar individuals is likely
to enhance the predictive performance as well as the description of each
individual through derived group information.

5.1. INTRODUCTION
Advancements in technology using smartphones and sensors have of-
fered new opportunities in collecting more and more EMA data for longer
time periods for each individual. However, due to factors such as lengthy

Parts of this chapter have been published in

• M. Ntekouli, G. Spanakis, L. Waldorp, and A. Roefs. “Model-based Clustering of In-
dividuals’ Ecological Momentary Assessment Time-series Data for Improving Fore-
casting Performance”. In: BNAIC/ BeNeLearn 2023: Joint International Scientific
Conferences on AI and Machine Learning. 2023
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collection periods or frequent sampling, missing data remains a common
issue [156]. Insufficient data leads to the fact that too little data is not
well-representative of individual patterns, and consequently, it is some-
times not enough to train accurate and reliable personalized models.

Although it is known that every individual is unique and exhibits their
own symptoms and behaviors, it is likely that shared patterns can also be
found in groups of people. A way to approach this issue could be through
nomothetic approaches, providing information collected by other individ-
uals during the same EMA study. However, instead of using all available
data, refining this approach by selecting only those individuals with simi-
lar EMA profiles and underlying patterns. By focusing on modeling these
relevant groups separately, it is possible to get great insights for bet-
ter describing and understanding the profiles of single or groups of indi-
viduals, uncovering hidden structures as well as building more accurate
predictive models for short-term changes in EMA variables.

As already introduced in Chapter 4, finding similar patterns among el-
ements, or individuals in the current setting, when the true grouping is
not available, could be uncovered by clustering [124]. Clustering has
been studied a lot, with a great interest in time-series data in recent
years [127, 157]. Although most straightforward and popular cluster-
ing approaches use raw time-series data and further research the most
appropriate similarity/distance measure, other types of representational
information can also be used to characterize each individual. For exam-
ple, model-derived information, such as model parameters, could also be
utilized, reflecting another promising clustering approach, that is model-
based clustering [75].

In model-based clustering, since each individual is described by a per-
sonalized predictive model, the objective is to identify groups of similar
models that, in turn, represent similar groups of individuals. In this case,
the raw time-series data is still used, to build the prediction models, not
directly for clustering. Then, clustering is applied to information derived
from these models. This model-specific information may include differ-
ent characteristics of each personalized model. For instance, for linear
models, it can be the extracted coefficients of the trained models. Thus,
identifying similar sets of coefficients could be useful for uncovering sim-
ilar individuals.

This chapter aims to investigate the use of model-based characteris-
tics or information for clustering high-dimensional time-series EMA data,
through two different approaches. First, model-derived parameters, such
as coefficients or feature importance of personalized models, are ex-
ploited for applying clustering [75]. Second, since one of the clustering
goals is to improve the forecasting performance, performance could be
also considered as an alternative information used to optimize clustering
[158]. To evaluate both clustering approaches, all clustering scenarios
are first assessed on some intrinsic evaluation measures, such as Silhou-
ette coefficients and stability. Second, clustering is evaluated through
the performance of the clustering-derived group models. For perfor-
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mance evaluation, clustering methods are also compared to three base-
line scenarios, such as personalized, using-all-data, and random group-
based approaches [111, 112].

5.2. RELATED WORK
Time-series clustering has been studied a lot lately, with some significant
reviews detailed in [127, 157]. Building on the related work regarding
time-series clustering presented in Chapter 4, Section 4.2, this section
aims to further enrich the research field by exploring model-based clus-
tering approaches specifically tailored to time-series, which is the em-
phasis of this work.

Beyond using the raw time-series information, different data represen-
tations can also play a key role when applying clustering [159]. These
representations often include statistically derived features, dimension-
ality reduction techniques like Principal Component Analysis (PCA), or
other transformation-based methods, all aimed at capturing the under-
lying time-series dynamics in a simplified yet meaningful way. Once
these features are extracted, clustering techniques can then be applied
to group similar data points effectively [160].

Similarly, model-derived features and characteristics can serve as
an alternative approach to represent time-series data. This approach
falls under the category of model-based clustering. Instead of relying
solely on raw time-series data, this approach utilizes features extracted
from predictive or generative models that encapsulate the key dynamics
of the data. According to two review papers on time-series cluster-
ing, model-based approaches can be broadly categorized into two main
groups: parameter-based and mixture-based methods [127, 157].

5.2.1. CLUSTERING BASED ON MODEL PARAMETERS
The first approach starts with the assumption that each individual’s data
can be reliably described by a model, so that it can be represented by the
model’s estimated parameters. As a result, the problem of finding the
most similar individuals is translated into finding the most similar param-
eters among the different models. In this case, different types of param-
eters can be used, depending on the applied base model. For example,
parameters can be easily extracted from linear models, such as the Au-
toregressive (AR) model or Autoregressive Integrated Moving Average
(ARIMA) [161], where the autoregressive coefficients are then used. Var-
ious transformations of these can also be exploited by clustering [162].
Similarly, using probabilistic models, like Hidden Markov Model (HMM)
[163], clustering is applied to the probability densities derived from indi-
vidual HMM. In the case of non-linear models, another type of parameter
can be produced. For instance, for Random Forest (RF), measures relying
on feature importance values have been proposed [164, 165].
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Recently, with advancements in deep learning, time-series embed-
dings derived from neural networks have become increasingly popular
[131, 166]. Techniques such as Recurrent Neural Networks (RNNs), Long
Short-Term Memory (LSTM) networks, and advanced Autoencoders can
generate latent representations of time-series data, often referred to
as "embeddings". These embeddings are more complex internal model
representations, capturing both the temporal dynamics and local data
structures [167]. For instance, in [168], the parameters derived from
the output layer of an RNN model are utilized as the input for cluster-
ing, summarizing the entire time-series into a fixed-length feature vector
while preserving its sequential dependencies.

5.2.2. MIXTURE-BASED CLUSTERING
The second category aims at recovering the optimal data partition by fit-
ting a mixture of group models that better represent the whole set of in-
dividuals. More specifically, it is alleged that each individual is optimally
described by a group model trained on a set of similar individuals, indi-
viduals belonging to the same cluster. In such settings, each group model
would correspond to one cluster, with each individual’s data contributing
to the training of these group models. Commonly, the models used in
this approach can be based on statistical and probabilistic methods. This
category includes methods estimated by the Expectation-Maximization
(EM) algorithm, such as Gaussian Mixture Models (GMM) and HMM. Using
EM, the produced mixture of models always results to a soft-clustering
solution. Additionally, hard-clustering is possible if, instead of EM, a ver-
sion of k-means is used. Such an approach was recently studied in [75].
The proposed K-Models paradigm aims to fit a separate model for each
cluster, tested on AR and ARIMA.

However, it is worth highlighting that all these approaches are not eas-
ily adaptable to multivariate time-series data of unequal lengths across
multiple individuals. This presents a unique challenge, which this chapter
addresses by tackling a clustering problem involving multivariate time-
series of multiple individuals. Moreover, another goal that the current
chapter explores is the application of both aforementioned approaches
with more advanced non-linear models.

5.3. METHODOLOGY
This section starts by providing some details regarding the personalized
forecasting models that play a key role in the proposed clustering proce-
dure. Following, we present thoroughly the two model-based clustering
approaches we focus on this work. While the first one is based on the
parameters of already trained individual-forecasting models, the second
is focusing on training group models as part of the clustering procedure
with the goal to find the most representative group models for all indi-
viduals.
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5.3.1. INTRODUCTION TO PERSONALIZED FORECASTING MODELS
Initially, we establish one of the main procedures in the examined ap-
proaches besides clustering: the training of forecasting models. In the
current setting, the prediction task of the models used is forecasting. It
is important to highlight the key role of the forecasting models since the
whole clustering procedure and clustering evaluation depend on them.

Forecasting models aim to accurately predict the future of EMA re-
sponses. However, within EMA data, the task becomes more compli-
cated by aiming for the 1-lag future values of all variables. Specifically,
in a multivariate time-series setting with V variables, we need to build
V independent models, each using the same input predictors, the set of
all variables, and predicting one of the examined variables shifted in the
future. This setup is illustrated in Figure 5.1. Consequently, when we
refer to one individual or personalized forecasting model, this implies all
V independent sub-models necessary for predicting all V variables in the
future.

Xi,1,t-1 Xi,1,t-1 Xi,1,t-1

1-lag model

Xi,1,t-1 Xi,1,t-1 Xi,1,t-1

...

...

Figure 5.1: Personalized 1-lag Forecasting Model: The input includes all
variables at time-point t − 1, denoted as ,1..V,t−1, while the
output corresponds to all variables at time-point t, denoted
as ,1..V,t.

5.3.2. MODEL-BASED CLUSTERING APPROACHES
This section presents the two examined model-based clustering ap-
proaches. While the first approach focuses on clustering based on model
parameters, the second aims at building a mixture of representative
group (or cluster) models by clustering individuals using their predictive
performance.

APPROACH I: PARAMETER-DRIVEN CLUSTERING (PDC)
In the first approach, which we refer to as Parameter-Driven Clustering
(PDC), clustering is performed using model-derived parameters repre-



5

106 5. Group-based Approaches through Model-based Clustering

senting each individual. In particular, this approach considers the pa-
rameters extracted by the N personalized models as the input of cluster-
ing, as presented in Figure 5.2. In other words, it uses the parameters of
trained personalized models to represent every single individual, assum-
ing that these models can accurately describe them. For each individual,
V variables need to be predicted. Given the EMA structure, where each
variable can be predicted based on the values of all variables from the
previous time-step, this is achieved through V separate models. So, the
parameters of all V independent models need to be concatenated in or-
der to better represent each individual.

Figure 5.2: Clustering approach I: Parameter-Driven Clustering (PDC).
This approach considers the parameters extracted by the N
personalized models as the input of clustering.

The type of parameters depends on the chosen base model that is
used. Here, different base models are applied, both linear and non-linear
ones. In the case of linear models, the fitted coefficients can be easily
extracted. Each coefficient indicates the influence of one variable in pre-
dicting the future values of another. So, to cover all combinations, finally
V × V coefficients are used for representing one individual. Finally, the
coefficients’ matrix, that is the set of N by V × V parameters, is input to
clustering.

For non-linear models, such coefficients are not inherently available.
Thus, similarly, trying to quantify the influence of one variable on an-
other, feature importance values can be used. In this scenario, the num-
ber of parameters for each individual has remained the same, V × V, as
well as the total parameters matrix, N by V × V.
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APPROACH II: PERFORMANCE-OPTIMIZED CLUSTERING (POC)
In the second approach, clustering is applied using different model-
derived information related to predictive performance, that is assumed
to alternatively describe the individuals. In this case, clustering aims
at building representative global or cluster models, each consisting of
similar individuals based on their forecasting performance [158]. Each
cluster is optimized on the total test performance of its individuals, in
terms of the Mean Squared Error (MSE) across all variables and time-
points in their test set.

In particular, the procedure is quite similar to the original k-means al-
gorithm, with the main difference found in the objective function. The
goal now is to minimize the MSE errors on the test set of all individuals,
instead of minimizing the within-cluster distance of all individuals to the
centroid. In more detail, the different steps are summarized in Figure
5.3, and described as follows:

Figure 5.3: Clustering approach II: Performance-Optimized Clustering
(POC). This approach is optimized for forecasting perfor-
mance, ultimately aiming at building k representative cluster
models.

• Initialization Step: The procedure starts with a random initialization,
setting the centroids of the clusters. For faster convergence, we fol-
low an approach similar to the k-means++ algorithm. More specif-
ically, after the first centroid is randomly selected, the rest should
be set in a way to be the most dissimilar to the first one. To find
the most dissimilar individual to the centroid, it is assumed that its
performance on a model based on this individual-centroid should be
the worst. So, we start by building a model trained on the first cen-
troid (centroid model) using the data of the first selected individual-
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centroid. Then, this model is tested on all the remaining N − 1 indi-
viduals and the one with the highest test MSE error is then selected
as the individual-centroid of another cluster. If the predefined num-
ber of clusters (k) is greater than 2, this process is repeated until
the centroids of all clusters have been found.

• Clusters Assignment Step: To assign the rest of the N− k individuals
to a cluster, again their performance is used as a measure. Instead
of calculating the actual distance to the clusters’ centroids, their
performance is examined, in terms of MSE error, on the k centroid
models. As a result, each individual is assigned to the cluster with
the minimum error.

• Forward Step: Having assigned all individuals into clusters, the main
procedure begins with the goal to optimize the objective function of
the predictive algorithm. This is described in Equation 5.1, where
the total test MSE error LMSE corresponding to all N individuals need
to be minimized, meaning the error of every single individual. To
achieve this, the cluster models are built using the training data (the
first part of a dataset) of the individuals belonging to each cluster.
Then, all the cluster models are assessed on the test set (the last
part of each dataset, where time-points range from 1 to T) of all
individuals, predicting all V variables.

LMSE =
N
∑

=1

∑T
t=1

∑V
=1(,,t − ̂,,t)

2

T · V
(5.1)

• Update Step: For each individual, its test performance is compared
on all the cluster models. If the test MSE error is smaller in another
cluster than the one already belonging to, the individual moves to
the other cluster. This way, all the clusters’ composition is updated.

The last two steps, forward and update, are repeated until there is a
convergence, meaning that individuals are fixed in clusters, or the max-
imum number of iterations has been reached. When the clustering al-
gorithm stops, the clusters’ composition has been finalized, the group or
cluster models are trained and the total minimum loss has been found.
However, beyond the initialization step, clusters’ centroids are not di-
rectly used or calculated.

5.4. EXPERIMENTS
In the following section, the results of the two model-based approaches
are presented. First, both are tested using different base models, such
as Explainable Boosting Machine (EBM) [106] introduced in Chapter 2,
Section 2.4, where clustering and final forecasting performance are ex-
amined. Then, the final test performance of the clustering approaches is
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evaluated on the last 30% of each individual data and compared against
some baseline approaches. These include (1) the personalized, also re-
ferred to as the N-Clustering problem, (2) the using-all-data forecasting
models, or 1-Clustering, and (3) group models where individuals were
randomly assigned, or Random-Clustering.

5.4.1. EXPERIMENTAL SETUP
In the analysis, the following set of experiments is investigated on the
real-world NSMD dataset, which is detailed in Section 2.6. To assess
the clustering performance, three baseline scenarios are examined: N-
Clustering (or personalized), 1-Clustering (all individuals belong to one
group) and Random-Clustering (random-groups clustering), as follows:

• k-Clustering: During k-means clustering, the number of clusters (k)
needs to be predefined. Here, the values of k are set in a range from
2 to 20. When k is set, we compare the results with a different base
forecasting model, where here there is a set of 3 different models.
The set includes one linear, the Vector Autoregressive (VAR) model,
and 2 non-linear ones, Random Forest (RF) and Explainable Boosting
Machine (EBM) [106]. For each combination of k and forecasting
model, k-means clustering is then repeated for 10 iterations.

• N-Clustering: The total forecasting performance after clustering is
compared with the case of having personalized models. So, for each
individual, a separate model is trained based on their own data and
assessed on its unseen test data. Having N personalized models for
N individuals is identical to the case clustering using k = N. Thus,
the concept of using personalized models is also called N-Clustering.

• 1-Clustering: In a similar manner, another baseline scenario under
investigation involves the case of k = 1, which is also referred to
as 1-Clustering. Then, it is assumed that all individuals belong to 1
cluster, so that only one model could describe them all after being
trained on all data. For a fair comparison, its performance is tested
separately on the individuals’ test data.

• Random-Clustering: To ensure that the effect on clustering perfor-
mance is not caused just by the fact that fewer individuals than all,
but also more than one, are used in a model, some additional ex-
periments are added. The case of randomly assigning individuals to
different clusters is then examined. The same range of k values is
again used and 10 iterations are executed for each experiment.

5.4.2. EVALUATION
After applying clustering, there are several ways to evaluate the derived
results. Here, the evaluation is conducted through the quality of clus-
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ters (intrinsic measures) as well as the performance of a downstream
forecasting model.

• Clustering Evaluation: For clustering evaluation, either intrinsic or
extrinsic measures [152] are mostly used. Because the latter re-
quires obtaining ground truth labels, which are not available in our
case, the focus of this work is on the intrinsic measures. The ma-
jority of the intrinsic measures are computed using the compact-
ness of each cluster as well as how well different clusters are sep-
arated. Similar to Chapter 4, the well-applied Silhouette analysis is
selected, since other measures (such as Davies-Boudlin [152]) are
mostly based on clusters’ centroids, which lack any natural expla-
nation. Silhouette coefficients are given through Equation 5.2 (also
in Chapter 4 in Equation 4.8), calculating the average score across
all N individuals. For each individual  belonging to cluster C, the
score compares the average similarity  across all individuals of
the same cluster (, where  = 1..W and W is the total number
of individuals of C) to the average similarity b of the individuals
belonging to the closest to C cluster (z, where z = 1..Z and Z is
the total number of individuals of the closest to C cluster).

S =

∑N


b−
mx(b,)

N
,where (5.2)

 =

∑

εC d(, )

W
and b =

∑

zε closest C d(, z)

Z

Another evaluation measure is the stability of the clustering results
[153]. Through repeating clustering multiple times, the stability or
agreement of individuals assignment into clusters can be assessed.
More specifically, the Adjusted Mutual Information (AMI) between
the individuals’ cluster labels is used as stability index [169].

• Forecasting Performance Evaluation:

An additional way to evaluate clustering performance is through the
performance of the derived cluster model. Using the data of each
of the clustering-derived groups, different cluster models can be
trained to aim at forecasting the 1-lag future values of all variables,
as described in Section 5.3.1. Then, these can be evaluated using
the MSE on the test set of each individual. Particularly, each indi-
vidual is evaluated on the MSE of their test set data (last 30% of its
data) using the cluster model that belongs to. The total MSE of all
individuals on their test sets is used as the performance indicator of
each clustering method. Similarly, the performance of the baseline
methods can be assessed, using the total MSE on the same test sets
of all individuals.
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5.4.3. RESULTS
The results of the conducted experiments are presented in this section.
First, the two proposed clustering methods, PDC and POC, are assessed
through different intrinsic evaluation measures. Afterwards, clustering
is assessed through its downstream forecasting performance as well as
in comparison to three baseline methods, 1-Clustering, N-Clustering and
Random-Clustering.

CLUSTERING EVALUATION

As already described in Section 5.3.2, for cluster analysis, or, as we also
call it, k-Clustering, two model-based approaches are investigated, based
on model parameters (PDC) and performance (POC), respectively. In both
approaches, different choices are examined, such as the applied base
models, which can be VAR, RF and EBM, while the number of clusters
(k) can also take values from the set {2,3,4,5,6,10,15,20}. Regard-
ing PDC, the selected base model refers to both individual and cluster
models. Then, for both approaches, all combinations of these choices
represent the examined experiments, where each one is repeated 10
times.

All these experiments are evaluated using two intrinsic clustering eval-
uation measures, described in Section 5.4.2, Silhouette coefficients and
Stability. First, the Silhouette coefficients of all the experiments of both
approaches are depicted in Figure 5.4a. For each method (combination
of base model - clustering approach) on the x-axis, all points of the same
color represent 10 iterations of each experiment, repeated using a partic-
ular value of k. Between the two clustering approaches, the second one,
POC, clearly reaches much higher scores than the first one. This holds
for all different base models. In detail, EBM gives the highest maximum
scores in both approaches, around 0.17 and 0.11, respectively, whereas
the VAR models show the lowest maximum scores at 0.10 and 0.03, re-
spectively. Although the second approach mostly outperforms the first
one, the difference becomes less significant when using EBM with a low
value for k. Thus, EBM models seem to better describe the complex EMA
data, even in the form of feature importance values.

It is also noticed that increasing the number of clusters used, the pro-
duced Silhouette tends to decrease. Regarding the first approach, there
are iterations for EBM indicating that k = 2 and k = 4 give the best clus-
tering, whereas for the second approach, that occurs for k = 2 and k = 3.

In a similar way, according to the derived clustering grouping, the Sil-
houette coefficients calculated based on the DTW distance of the indi-
vidual time-series data can also be calculated and shown in Figure 5.4b.
The found pattern resembles the one of Figure 5.4a, although the Sil-
houette values are lower for all the experiments. In the first clustering
approach, all Silhouette coefficients are below zero, indicating a mean-
ingless clustering. However, referring to the second clustering approach,
the Silhouette scores for low values of k are a bit higher, but not exceed-
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Figure 5.4: The Silhouette coefficients of all experiments of both ap-
proaches (PDC and POC) are presented. The difference be-
tween the chosen values of k and base models is depicted.
The same-colored points represent different iterations of the
same experiment (combination of k value and base model).

ing 0.07, when using k = 2 and EBM.
Next, all clustering experiments of both approaches are assessed for

their stability, in terms of cluster labels agreement across all 10 iter-
ations. The experiments’ stability, as expressed by the AMI scores, is
presented in Figure 5.5. In most of the cases, it is obvious that the sta-
bility values are quite low. This is caused by the fact that the produced
groups were quite different from each other. Based on the complexity
of individual EMA patterns, it seems unlikely for different people to be
always separated in a particular way. Thus, it is preferable to work with
the group information each iteration separately extracts.
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Figure 5.5: Stability of all experiments of both approaches (PDC, POC) is
presented.
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It is also important to note that, even though k-means requires a prior
specification of the number of clusters (given k), the number of produced
clusters could deviate from this. So, in the whole analysis, only the itera-
tions of experiments that actually produce the given number of clusters
are considered valid. While in PDC, clustering always produces the given
number of clusters, for POC the number mostly deviates from the ex-
pected. The average number of clusters is displayed in Table 5.1. When
the average produced number is smaller than the given one, it means
that there are iterations with fewer extracted clusters. This is usually the
case when increasing the chosen number of clusters. These are eventu-
ally excluded from the analysis of Silhouette coefficients and Stability.

Table 5.1: POC: The average number of clusters, across 10 iterations, for
all experiments.

k 2 3 4 5 6 10 15 20

VAR 2.0 3.0 4.0 4.8 5.8 9.2 12.6 13.6

RF 2.0 3.0 4.0 5.0 5.9 9.7 13.6 17.2

EBM 2.0 3.0 4.0 5.0 6.0 9.7 14.4 18.1

DOWNSTREAM FORECASTING PERFORMANCE

As a second step, clustering can be evaluated through the forecasting
performance of the clustering-derived group models. First, MSE loss
scores are summed across all individual test sets within each experiment
to obtain a total MSE for each experiment. These total MSE scores are
then averaged over 10 iterations and compared across experiments in
the two proposed clustering approaches, as shown in in Figure 5.6a. A
clear distinction is again obvious between the two clustering approaches,
with POC leading to slightly lower loss scores, which is translated to a
better performance.

In more detail, on the one hand, for the first approach, the scores do
not vary a lot for the examined number of clusters, leading to a score
approximately at 9.07, 9.02 and 8.86 in the cases of VAR, RF and EBM
models, respectively. On the other hand, for the second approach, the
scores are much lower and not that constant across the different val-
ues of k. While for low values of k, the loss indicates that EBM shows
the best performance, this changes after k = 6, where RF, then, gives
the best scores. Although that difference between the base model is
not important, the difference across the k values is quite large. For all
base models, it starts at around 8.7 − 8.9 and ends at 8.3 − 8.5. Thus,
increasing the number of clusters, and consequently, that of the clus-
ter models, seems to improve the performance. However, in that case,
the number of the actual clusters found tends to be smaller than the
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POC) are compared to the random indi-
viduals grouping (rand).

Figure 5.6: Total MSE loss of all individuals is given, averaged across all
iterations.

given one. Therefore, there should be a trade-off between performance
improvement and the capability of finding the given number of clusters.

As a general result, the overall loss scores are partly in agreement with
the findings after the Silhouette analysis. Both show that the POC outper-
forms PDC, while clustering, using EBM as the base model, yields mostly
the best performance. Nevertheless, the impact of different k values is
not consistent. For instance, while performance is optimal at k = 20,
the corresponding Silhouette coefficient reaches its lowest value, high-
lighting a potential trade-off between clustering quality and predictive
performance.

Because of this disagreement in the analysis, it is essential to further
reject the possibility of having enhanced performance results by just us-
ing more cluster models, instead of meaningful cluster models. In other
words, we need to determine if this improvement could be a random
effect of just splitting the individuals in more clusters, leading to an
increased number of cluster models. To test this, we split individuals
randomly into the same predefined range of possible clusters, without
having applied any clustering technique. This refers to the Random-
Clustering approach. Again, every experiment is conducted 10 times,
and the average total loss scores are exhibited in Figure 5.6b. It is ob-
served that the loss line plots of random grouping follow the patterns of
PDC, whereas they are quite worse than the experiments of POC. Thus,
it seems that the improved performance is not connected to a random
effect of just using more cluster models.

Finally, the two proposed clustering approaches are compared to two
baseline scenarios, namely N-Clustering and 1-Clustering, which corre-
spond to the personalized and using-all-data models, respectively. For all
these scenarios, the total loss scores of all individuals (again according
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to Equation 5.1, averaged on all variables and test time-points for each
individual) are given in Table 5.2. As for k-Clustering, both k = 2 and
k = 20 clusters are considered, which, in POC, yield better performance
compared to the baseline scenarios. According to the derived scores,
the lowest loss is found when using 20-Clustering and RF, reaching 8.36.
Among the baseline scenarios, the lowest MSE score is for the person-
alized EBM, with an MSE of 8.9, which is much better than that of N-
Clustering. Whereas, for RF, the reverse trend becomes apparent, where
N-Clustering outperforms 1-Clustering. However, in both scenarios, the
differences seem almost negligibly small, with improvements reaching
a maximum of 7.99% and 7.17% compared to the 1-Clustering and N-
Clustering, respectively. Overall, k-Clustering using the POC approach is
found to enhance the overall forecasting performance over the baseline
approaches, which actually exhibit only slight differences in MSE.

5.5. DISCUSSION
According to the evaluation results, the superiority of the second ap-
proach, i.e., clustering based on downstream performance, is appar-
ent over the first approach, which is based on model parameters. This
was confirmed by both the Silhouette coefficients and forecasting per-
formance. Regarding the Silhouette analysis, the fact that the produced
scores did not exceed 0.17 shows that clustering cannot be character-
ized as meaningful. However, in real-world datasets, because of their
structure complexity, values close to the maximum possible, that is 1,
are not realistically expected. Thus, in this case, we should evaluate
the scores in comparison to the produced values of all the rest of the
examined experiments. Moreover, regarding performance, it is reason-
able that lower errors occur in the second approach, as in principle the
clustering approach is optimized on the same metric, total MSE.

According to the aforementioned evaluation measures, there was a
disagreement in determining the optimal clustering parameters. For ex-
ample, increasing the number of extracted clusters seems to give a lower
performance error, whereas the opposite holds for the Silhouette coeffi-
cient. Thus, a trade-off analysis regarding the number of clusters is nec-
essary to be further studied, also on the basis of the specific application
domain.

Another critical point of clustering is its evaluation in terms of stability.
For the majority of experiments, the estimated cluster labels of all indi-
viduals were quite different across the 10 running iterations, leading to
low stability values. This means that the initialization step had a large im-
pact on the resulting data partition, although this impact was not always
observed in the test performance error. Thus, despite the low stability,
similar values for performance loss were found. Utilizing an initialization
method similar to kmeans++ only leads to locally optimal solutions with
respect to the defined clustering optimization. Therefore, this problem of
initialization bias needs to be further investigated in more datasets.
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Table 5.2: MSE Loss of all the examined scenarios, 2- and 20-Clustering,
as well as 1- and N-Clustering.

VAR RF EBM

2-Clustering (PDC) 9.075 9.024 8.862

2-Clustering (POC) 8.865 8.823 8.741

20-Clustering (PDC) 9.098 8.860 8.833

20-Clustering (POC) 8.428 8.362 8.479

1-Clustering 9.072 9.089 8.904

N-Clustering 9.072 9.008 9.052

Finally, as a general remark, although using the model-based esti-
mated parameters in a clustering task has been widely applied, in real-
world problems, more complex data representations may be necessary.
It is likely that high-dimensional, dynamic, and possibly noisy time-series
data cannot be accurately described only with parameters derived from
linear/non-linear equations. Thus, more complex feature representation
should be learned using deep learning techniques [166, 168]. Specifi-
cally, using such sequential deep learning models, including a greater
number of historical values than just one previous time-point, could also
be beneficial in training, achieving better accuracy. Enhanced model
accuracy often leads to better representations of the underlying data,
which can potentially support more meaningful clustering results.

5.6. CONCLUSION
In this chapter, two model-based clustering approaches have been intro-
duced, with a twofold goal (1) to group similar individuals using their EMA
data, and (2) to improve the forecasting performance for all individu-
als. The two approaches utilize different model-derived information, one
based on models’ parameters (PDC), whereas the other on their overall
performance in a forecasting task (POC). Throughout the chapter, various
experiments were conducted to assess both approaches along with a set
of other important clustering-related choices, such as the number of clus-
ters and the base model used. The evaluation is, first, conducted using
intrinsic evaluation measures (Silhouette coefficients, clustering stabil-
ity) and then on the performance of a downstream forecasting scheme,
where each cluster is described by a separate cluster model.

According to the evaluation results, besides stability which was quite
low, the remaining measures indicated that the second clustering ap-
proach (POC) outperforms the former one (PDC). The POC approach of
k-Clustering was also found to enhance the overall forecasting perfor-
mance, compared to the baseline approaches, achieving a maximum
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improvement of 7.99% over the 1-Clustering when using RF. Thus, the
results demonstrated that the superiority of clustering performance is
not a random effect arising from the fact that a mixture of models is
used.

Overall, given that potential benefits have already been found when
using clustering-derived information, more advanced integrating ap-
proaches need to be explored, expecting to further enhance model
performance. Such approaches could offer a balance between clustering
and personalized modeling, prioritizing individual data. For example,
combining transfer learning methods with clustering presents a promis-
ing direction for enriching the modeling process by transferring knowl-
edge from group-level to individual-level. This concept is later explored
in Chapter 7 [46, 111].

Having explored a wide range of possible clustering-related methods
and options within the context of EMA data in both Chapters 4 and 5, we
recognize the importance of good evaluation measures to assess clus-
tering effectiveness. Therefore, in the next chapter, Chapter 6, we shift
our focus towards explainability as another potential evaluation measure
for clustering. Such an approach could complement traditional evalua-
tion metrics but also offer a critical view for a deeper understanding and
more comprehensive validation of the clustering outcomes. For instance,
by generating explanations, the structures and key factors of the derived
clusters could be identified, offering insights into what differentiates all
clusters. Such information could enhance the overall applicability and
relevance of clustering, making it more useful for targeted analysis.





6
EXPLAINING EMA CLUSTERING

BASED ON MULTIVARIATE
TIME-SERIES

With the goal to broaden EMA analysis by incorporating group-based
models, that rely on individuals exhibiting similar temporal EMA patterns
or characteristics, various clustering methodologies were explored in
Chapters 4 and 5. Identifying homogeneous groups of people is of great
importance to eventually improve the modeling performance. While
some evaluation measures, examining the quality of the derived clus-
ters, have already been explored in the previous chapters, this task re-
mains quite challenging. Therefore, this chapter further investigates ad-
ditional measures for clustering evaluation. A key component of this
evaluation is clustering explainability. To approach this, we propose an
attention-based interpretable framework to identify the important time-
points and variables that play a primary role in distinguishing between
clusters. Specifically, the goal is to examine ways to analyze, summa-
rize, and interpret the attention weights as well as evaluate the patterns
underlying the significant segments of the data that differentiate across
clusters.

Parts of this chapter have been published in

• M. Ntekouli, G. Spanakis, L. Waldorp, and A. Roefs. “Explaining Clustering of Eco-
logical Momentary Assessment Data Through Temporal and Feature Attention”. In:
Explainable Artificial Intelligence. Ed. by L. Longo, S. Lapuschkin, and C. Seifert.
Cham: Springer Nature Switzerland, 2024, pp. 75–99. isbn: 978-3-031-63797-1

119



6

120 6. Explaining EMA Clustering based on Multivariate Time-series

6.1. INTRODUCTION
Despite the observed EMA data heterogeneity among individuals, iden-
tifying similarities in their patterns can be also valuable, giving insights
into more general mechanisms that are valid for particular subgroups.
However, as highlighted throughout the previous chapters, it is quite
difficult to ascertain if there are such subgroups for which commonali-
ties hold and also how to discover them. While various clustering-based
methodologies were investigated in Chapters 4 and 5, uncovering ho-
mogeneous groups of people is a complex task. Especially, in real EMA
datasets, given that clustering is an unsupervised process and true EMA
grouping is not commonly available, evaluating the quality of the derived
clustering labels poses significant challenges. It is also expected that,
due to the inherent variability of EMA data as well as the complexity of
the real-world multivariate time-series (MTS) data, clustering algorithms
could produce quite different results leading to different groups. Thus, a
critical point to be addressed is evaluating the clustering results.

Beyond the well-applied distance-based criteria capturing the quality
of clusters, mostly explored in the previous chapters, clustering inter-
pretability is another important aspect of evaluation. Interpretability en-
sures that the patterns and common characteristics of the groups identi-
fied through clustering can be understood, explained and validated in the
context of mental disorders. Thus, uncovering the meaningful patterns
of each cluster within EMA data could provide insight into intra-individual
psychopathological processes, their temporal patterns, and their inter-
relationships among theoretically similar subtypes of disorders.

In this chapter, to address the need for explanations on clustering re-
sults, the proposed methodology focuses on investigating interpretable
deep-learning mechanisms capable of handling MTS data, particularly
within the domain of psychopathology. Our approach utilizes advanced
deep-learning models, specifically attention-based mechanisms [171],
to understand the complexities inherent in MTS data without relying on
prior data transformations. Therefore, this approach ensures that our in-
terpretations rely on the actual data dynamics rather than other transfor-
mations, providing a clearer and more accurate comprehension of MTS in
psychopathology. As depicted in Figure 6.1, our methodology employs a
multi-aspect framework that integrates both temporal and feature-level
attention. Therefore, it is designed to provide explanations by identify-
ing the important time-points and variables that play primary roles in the
domain of psychopathology [172, 173].

While the proposed framework for extracting temporal and feature-
level attention is fully described, a significant part of this chapter ex-
amines ways to analyze, summarize, and interpret the attention weights
as well as validate the patterns underlying the important segments of
the data that differentiate between clusters. More specifically, this in-
cludes the significant and distinct characteristics in cluster-, feature- and
individual-level and their evaluation. Thus, such clustering explanations
could prove beneficial for generalizing the existing concepts, uncover-
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Figure 6.1: An overview of our methodological approach for explaining
clustering results using attention-based interpretable models.
These models are applied to the clustering results to analyze
attention-based outputs, extracting meaningful insights and
providing clear explanations of the clustering patterns.

ing new insights into psychopathology and network theory, and even
enhancing our knowledge at an individual level. Furthermore, central
to our framework is its independence from any specific clustering algo-
rithms. This independence introduces a new theoretical perspective on
evaluating the robustness of an examined clustering result, allowing for
a more objective comparison and assessment of clustering algorithms.
Overall, attention-derived interpretability, beyond contributing to a bet-
ter understanding of the underlying data structures in psychopathology,
could be theoretically used to benchmark clustering effectiveness.

6.2. RELATED WORK
The field of time-series (TS) clustering research has attracted significant
attention, with a focus on clustering explanations being introduced the
recent years. First, related work on time-series clustering explanations is
presented. This involves extracting meaningful representations for clus-
ters’ descriptions as well as classical explanation methods in the field of
Explainable Artificial Intelligence (XAI).

6.2.1. CLUSTERS’ DESCRIPTIVE REPRESENTATION
In the context of understanding clustering results, the representation
of clusters is crucial in unveiling meaningful insights into underlying
constructs (connections in variables) and further facilitating decision-
making. This is usually achieved by examining and visualizing all ele-
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ments of a cluster. For instance, in temporal data, distinct trend lines
can be observed by overlying the time-series data belonging to each
cluster. Summary statistics, such as mean values and variance, can
also be calculated to describe each cluster. However, the difficulty of
distinguishing between them increases significantly when using many
clusters or high-volume datasets with multiple variables.

In a more simplified way, a cluster can be represented by a center point
or centroid, depending on the clustering methods applied. For example,
k-medoids clustering uses a medoid or an actual data point within the
cluster as the representative center, whereas k-means uses the average
point or centroid. Although this approach performs well when clusters
are compact or isotropic (spherical clusters), it falls short when dealing
with more complex clusters [174]. The complexity increases even more
when examining MTS data, where the centroid is also a temporal pattern
in the dimensions of the whole dataset. For extracting MTS centroids,
dynamic time warping barycenter averaging (DBA) was introduced by
[148]. Thus, capturing all this information does not seem ideal for ex-
tracting any insights due to the inherent high dimensionality of MTS.

To address a dataset’s high dimensionality, a common approach is to
reduce the number of features in a way to better visualize the clusters
on a two- or three-dimensional plot. This data transformation is typi-
cally achieved using Principal Component Analysis (PCA) or t-distributed
Stochastic Neighbor Embedding (t-SNE) projections [175]. However,
while these methods are effective for visualization, these methods
transform data into a new feature space that does not preserve the
interpretability of the original set of features. Moreover, it remains chal-
lenging how these could be directly applied to MTS datasets because
different properties need to be considered, such as the time dependency
of each point. In [176], different approaches are discussed regarding
visualizing MTS by projecting them to lower dimensions while capturing
time-related properties.

6.2.2. EXPLANATIONS ON TS CLUSTERING
Beyond statistically analyzing and exploring the data structures of each
cluster, most research works focus on extracting the important factors
(e.g., important variables) that influence cluster assignments, often by
applying interpretable models. Despite the low number of publication
outputs, the methodologies employed for explaining time-series cluster-
ing vary considerably.

Following the approach of transforming the data to different time-
series representations, the work of [177] applies clustering on a range
of interpretable extracted features, including intra-signal (or within fea-
ture) and inter-signal (across different features) characteristics, such
as variance and correlation, respectively. After data preprocessing and
dimensionality reduction techniques, a selection of features is retained
for clustering, showing the high importance of inter-signal features as
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always preserved in clustering. The number of features is then used
as a measure of interpretability, meaning that fewer features facilitate
clusters’ comprehension.

Moreover, other work, such as [178, 179] was inspired by the gen-
eral trend of training and explaining classification models to predict
the derived cluster labels. On the one hand, according to [178], lo-
cal interpretability methods, such as Local Interpretable Model-Agnostic
Explanations (LIME) [180], SHapley Additive exPlanations (SHAP) [181]
as well as Gradient-weighted Class Activation Mapping [182], are used
with different classification models (e.g. XGBoost) and trained again
on statistically-extracted temporal features. Examples of such features
were auto-correlation and median difference. On the other hand, the
work of [179] proposed a different approach to holistically perform clus-
tering and provide explanations through training a decision tree. In prac-
tice, to achieve this, two different data sources were used, time-series
and static or baseline data (such as demographic data), for clustering
and interpretation, respectively. After applying clustering on TS, the
cluster labels accompanied by the associated static data were used to
train an interpretable decision tree model. Therefore, it aims to optimize
both objectives, clustering and interpretation, at the same time.

According to the studies above, it becomes evident that existing
methodologies for providing explanations rely on the applied transfor-
mations of the original data. This means that explanations also refer to
the transformed feature space rather than the raw features raising some
questions regarding the actual interpretability and transparency of the
explanations. Therefore, beyond the limited work on the topic, there is a
need for further exploration of the level of the original data.

6.3. REVIEW ON CHALLENGES OF EXPLAINING MTS DATA
Due to the inherent challenges of the topic and the limited available pub-
lished research, the current chapter work was also inspired by the litera-
ture focusing on using interpretable classification models for explaining
a target output, which in our case corresponds to the clustering-derived
labels. Thus, an additional review of the challenges of applying inter-
pretable classification models on MTS is necessary.

6.3.1. CLUSTERING EXPLANATIONS
Although it is acknowledged that the interpretability of clustering is of
great importance in uncovering meaningful insights about data struc-
tures, limited work has been conducted in parallel with developing clus-
tering algorithms. All the well-known clustering methods, such as k-
means, were designed to group data, mainly considering various objec-
tive functions and dealing with different data types, but without taking
into account any interpretability aspects of clustering. Therefore, when
clustering results need to be explained, post-processing steps are com-
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monly used, involving an additional classification model trying to predict
and explain the clustering labels. For instance, in [183, 184], inter-
pretable threshold decision trees having k leaf nodes are applied to ex-
plain the labels of k-means or k-medoids. Therefore, in most cases, the
problem of clustering interpretability can be formulated as classification
interpretability. This is a quite more studied issue, with a goal to explain
the cluster labels as classification outputs.

Regarding classification explainability, beyond using inherently inter-
pretable models (such as linear or decision tree models), post-hoc ex-
plainability methods are also commonly explored. These post-hoc meth-
ods fall into two main categories, model-specific and model-agnostic
methods. Model-specific techniques correspond to particular groups of
models, such as extracting feature importance from tree-based mod-
els and tree ensembles or utilizing layer-specific integrated gradients for
deep-learning models [185]. On the other hand, model-agnostic expla-
nation methods are applicable on top of various models regardless of
their architecture. More specifically, these include the widely applied
LIME focusing on generating local and instance-specific explanations, as
developed by [180], and SHAP for feature-based explanations developed
by [181].

However, when dealing with MTS clustering, challenges arise in two
aspects of such formulation. First, the aforementioned XAI techniques
of supervised learning models typically focus on images, text, and tabu-
lar data, limiting their application to time-series data. Second, it is not
straightforward how to input time-series data into the classical classifi-
cation models, without discarding their temporal nature. Therefore, ad-
justments should be made in both parts to better explain the dynamics
of MTS data.

ADAPTING XAI METHODS TO MTS

As already discussed, the application of the aforementioned post-hoc
XAI techniques is limited when time-series data is involved. Especially,
in MTS, finding meaningful constructs in high-dimensional information
is not trivial. To deal with such data, segmentation techniques are fre-
quently applied to split time-series data into smaller, more manageable
subsequences. By analyzing segments of the time series, rather than
the entire series at once, it becomes easier to apply XAI methods.

To extend these methods for MTS, specific adaptations of LIME and
SHAP have been developed. For instance, TS-MULE [186] is a LIME-
based method that incorporates multiple advanced segmentation algo-
rithms, such as matrix profile [187] and Symbolic Aggregate approXi-
mation (SAX) [188]. This way, it is more likely that meaningful sub-
sequences are uncovered, leading to motifs (reoccurring patterns) and
local trends that are easily interpretable. Such methods can be also
adapted to interpret forecasting output, instead of only dealing with the
classical classification output. In the case of SHAP, multiple extensions
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have been proposed and adjusted to a time-series setting. An example
is an extension of KernelSHAP, adapted to explain time-series models,
such as AR, ARIMA, VAR, VARMAX [189]. This method focuses on com-
puting feature importance values for time series data. Another is the
TimeSHAP method, aiming to explain more complex RNN-based models
[190]. TimeSHAP provides explanations on multiple levels, by computing
feature-, timestep-, and cell-level attributions.

ADAPTING MTS AS AN INPUT TO CLASSIfiCATION MODELS

Another challenge of an MTS classification task arises from the complex-
ity of time-series, which is not straightforwardly input to a classical ma-
chine learning model. The problem is the complex nature of time-series
that makes it deviate from the conventional feature-vector representa-
tion. In the context of MTS, data is defined in a multi-dimensional feature
space and characterized by special connections between the instances
(time-points) as well as features. Thus, potential approaches focus on
how to input the time-series data into the classical classification models.

The most straightforward way is to neglect any temporal dependen-
cies by assuming instance and feature independence. This discards any
time-oriented association and perceives the data directly as a vector in-
put. Likewise, any classification model can be used on this dataset, but
using the same output for all instances of the same time-series. More-
over, a well-applied approach addressing such data is to transform the
complex-structured time-series data to a simple feature-vector represen-
tation. Such transformations can be achieved by using statistical-based
or shapelet- and subsequence-based characteristics of the time-series
[177]. After such transformation, a feature-vector representation is re-
tained, which can be easily used in all existing classification models.

Alternatively, the necessary transformations can be achieved inter-
nally through models incorporating data representations and prediction.
Recently, neural networks capable of handling multivariate time-series
data have been increasingly used. More specifically, recurrent neural
networks (RNN) models, such as long short-term memory (LSTM) and
gated recurrent unit (GRU) represent the state-of-the-art group of mod-
els in tasks involving sequential decision-making. Besides these, atten-
tion mechanisms have also been introduced to sequential modeling with
the ability to uncover and highlight the most important parts or periods
of sequences [171, 191]. In other words, attention-based models offer
interpretability for the results by using the learned attention weights. Uti-
lizing attention weights is considered a form of inherent interpretability
that is not commonly observed in NNs.

Given the attributes of attention-based models, the two main chal-
lenges of the current problem, handling MTS data and MTS interpretabil-
ity, seem to be overcome. Thus, our methodology is specifically de-
signed to enhance the explainability of MTS clustering by employing an
attention-based mechanism, strategically integrating both temporal and
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feature-level attention.

6.4. FRAMEWORK FOR CLUSTERING EXPLANATIONS
This section focuses on the proposed architecture that utilizes an inter-
pretable attention-based framework and how this can eventually lead
to clustering explanations. An overview of the proposed framework for
providing explanations on EMA clustering is given in Figure 6.2. All com-
ponents of the framework are described as follows.

6.4.1. INPUT: EMA DATA
The framework begins with the EMA data matrix X as input. In this chap-
ter, the real-world NSMD dataset (previously described in Section 2.6)
is examined. Due to the variability observed in missing observations of
individuals, we implement a padding strategy to complete the examined
EMA dataset so the dimension of X is {187,12, T}. Thus, each individ-
ual’s data is processed and filled when necessary, so that all have the
same number of time-points, equal to the maximum number of time-
points T observed across all individuals, for further analysis.

6.4.2. OUTPUT: CLUSTERING LABELS
In this setting, we adopt a framework that focuses on explaining cluster-
ing outcomes in EMA data without depending on a particular clustering
method. That is, our framework relies on the fact that clustering is per-
formed as a prior step, utilizing only the derived clustering labels to fur-
ther provide explanations. An obvious advantage of this is the flexibility
in the choice of clustering technique. Thus, as clustering is not an inte-
grated component of the framework, it basically utilizes the clustering
labels as the output to understand the reasoning behind the formation of
each cluster.

6.4.3. INTERPRETABLE MODELS
Moving to the actual components of the proposed framework, in the case
of k-clustering, it consists of k interpretable classification models. Each
model is designed to predict a specific cluster while distinguishing it from
all other clusters. For example, regarding the interpretable Model 1,
where the goal is to predict Cluster0, the output labels are 1 for individ-
uals of Cluster0 and 0 for Cluster1 and Cluster2. By predicting a single
cluster through an interpretable model, we could have access to the de-
scription of the model highlighting the special characteristics, dynamics,
and features that differentiate that cluster from the rest. Then, fitting
k models could facilitate explaining all k derived clusters, which means
exploring the important variables and time-points for each cluster.

Practically, although the input of each model is the whole EMA dataset,
the difference of the k models lies in their respective outputs. This works
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Figure 6.2: An overview of the proposed framework for providing expla-
nations on EMA clustering. The data of N individuals is input
into k interpretable models, each predicting an individual’s
cluster membership. To predict and explain the membership
of individuals in the k derived clusters, the clustering-derived
labels are binarized by one-hot encoding.

by one-hot encoding the clustering labels of the pre-applied clustering
and using a different output vector for each model, as shown in Fig-
ure 6.2. This encoding method transforms the categorical cluster labels
into a binary matrix, ultimately forming k binary classification models. It
should be noted that in the case of a 2-clustering, the framework consists
then of only one interpretable model. As the clustering output is already
binary, there is no point in fitting two models.

6.4.4. CLUSTER-SPECIfiC BINARY CLASSIfiCATION MODEL
As already discussed, each binary classification model aims at predicting
the individuals of a single cluster over the rest of the clusters. The main
components of each model are shown in Figure 6.3. Each binary clas-
sification model is interpretable mainly relying on self-attention mecha-
nisms [171]. By nature, the attention mechanism focuses on the tem-
poral domain of the data, identifying the most important parts of the
data in relation to the prediction task. By keeping only the relevant parts
of the data and minimizing or filtering out the effect of irrelevant ones,
the input space is effectively sparsified. This is implemented by setting
different attention weights on each time-points depending on the con-
tribution to the output. Therefore, such weights could be beneficial in
recognizing the important parts of the data for classifying an individual
in one cluster [191].

In the current framework, to address the complexity of EMA data, 2-
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Figure 6.3: An overview of the main components of each interpretable
model, consisting of the temporal and feature-level attention.
The outputs from both attention levels are concatenated to
perform binary classification, predicting cluster membership.
Here, V refers to the value matrix of attention, distinct from
the variable notation elsewhere in the dissertation.

level attention is used in parallel, each focusing on different aspects of
the data [172, 173]. The first level of attention is dedicated to uncover
the important parts in the temporal dimension, while the second one is to
the important features. The value of analyzing data at the feature level
is particularly evident when it comes to interpretation, as it is inherently
more insightful to offer explanations based on specific features.

The description of each attention-based mechanism is as follows:

TEMPORAL ATTENTION

As shown in Figure 6.3, the calculations for Temporal Attention follow the
procedure of a Scaled Dot-Product Attention self-attention block [171].
First, the 3 main components of the attention block, matrices query Q,
key K, and value1 V, are calculated by a linear transformation of the in-
put X data. Then, the dot product of Q and K is the attention matrix,
which after a softmax normalization produces the actual matrix of tem-
poral attention AT . For each individual , the dimensions of AT is T × T.
Subsequently, the attention matrix is multiplied by the matrix V (linearly

1The notation V here refers specifically to the standard attention mechanism terminology
and it is different than V used to denote variables elsewhere in this dissertation.
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transformed input X) to yield the context vector. In other words, the con-
text vector is the weighted input based on the learned attention weights.

By learning the weights in AT , the temporal attention component is de-
signed to identify the most significant time-points within the EMA data.
These weights are different for each individual and each time-point, re-
sulting in a T × T matrix. This matrix captures the relative importance
of each time point with respect to every other time-point, offering rich
insights into temporal dynamics. However, its size and complexity pose
challenges for direct interpretation and visualization. Despite the de-
tailed and informative structure of the derived AT , we employed a strat-
egy of averaging over one dimension, while ensuring the other dimen-
sion is normalized. This approach averages the contributions across all
time-points for each time-point, yielding only the average effect over
time. This significantly simplifies the attention matrix, retaining only one
dimension of size T or a time-series of T time-points.

FEATURE-LEVEL ATTENTION
In parallel to temporal attention, the feature-level attention mechanism
assesses the importance of each feature within the EMA data. As ob-
served in Figure 6.3, the block of feature-level attention is the same as
of the temporal attention. The only difference is that the initial Q′, K ′

and V′ matrices derive from a linear transformation of the transposed
EMA data, XT . As before, this component results in the attention weight
matrix AF and the context vector. While the latter has the same size as
the input X, the feature-level attention is in the dimension of V × V. This
is designed to map the inter-feature relationships and their contributions
to the model’s predictions. Through such weighting, the framework can
distinguish which variables play an important role in influencing the out-
come, providing an additional layer of explanation that complements the
temporal insights.

Regarding interpretability, it is evident that being in the feature do-
main makes it more straightforward to provide a deeper understanding
of the role of influence for each variable. Additionally, the low feature
dimensionality allows us to directly represent, visualize, and analyze the
feature-level attention weights. This offers clear insights into which fea-
tures are the most relevant and how these features influence each other
within the context of the prediction task.

6.4.5. CLUSTERING EXPLANATIONS THROUGH ATTENTION WEIGHTS
ANALYSIS

To provide clustering explanations, the produced averaged temporal at-
tention weights and feature-level attention weights are further analyzed.
The weights analysis first facilitates the description of each model, aim-
ing to differentiate each cluster, and then explaining the observed dif-
ferences. In the following analysis, we adopt a multi-aspect approach to
present our findings, covering a thorough exploration of the impact that
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Figure 6.4: The averaging process of the full Temporal Attention matrix
AT to AT .

attention mechanisms have at various but interconnected levels. These
involve the cluster- and individual-level. From high- to low-level, each
level zooms into different parts of the data, offering unique insights into
the underlying relationships.

CLUSTER-LEVEL ANALYSIS

At the cluster level, the focus is on separately describing the individuals
belonging to each cluster to get a clearer picture of the group-specific be-
haviors and attributes that distinguish one cluster from another. By ex-
amining the averages of attention weights across all individuals of each
cluster, derived from the model describing each cluster, the aggregated
behaviors and patterns of a cluster can be identified. At a high level,
the average weights could uncover the special characteristics or strong
effects that all these people have in common and possibly drive them to
belong to the same cluster.

Although both temporal and feature-level attention weights are ex-
plored, getting access to the average effects across individuals based on
the full temporal attention AT , or even the averaged temporal attention
AT , is a bit challenging. As already discussed and shown in Figure 6.4,
each individual is described by a time-series, AT , showing their impor-
tant time-points. However, it is not meaningful to average over different
time-series, because the important time-points differ across individuals.
To address this, the correlation between the attention weights AT and
each feature’s time-series is calculated, potentially identifying which fea-
tures consistently align with the attention temporal trend. Eventually, at
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this level of analysis, through both the temporal and feature-level atten-
tion, the importance of specific variables in leading to a particular cluster
output could be uncovered.

Subsequently, at a cluster level, the patterns of inter-variable relation-
ships or interactions dominant for each cluster are investigated. Based
on the model’s description through the attention weights, the relation-
ship between data across individuals of one cluster can also be checked
with respect to the acquired weights.

INDIVIDUAL-LEVEL ANALYSIS

At the individual level, the attention weights are examined separately for
each individual, allowing for a personalized interpretation of the data.
Without transforming or averaging the attention weights, the learned
weights are analyzed along with the original feature space of each indi-
vidual. Therefore, the focus is on understanding why or what was im-
portant to drive each individual to belong to a particular cluster. More
specifically, regarding the time domain, the temporal attention weights
facilitate uncovering what is happening underlying the time-points that
are important for the prediction output. For instance, it is interesting
to show which combinations of feature values get higher attention and
which get lower.

6.5. ANALYSIS AND RESULTS
In our analysis, the real-world NSMD dataset is used, consisting of 187
individuals, 153 padded training time-points (70% of the total 224 time-
points), and 12 distinct variables. After comparing different clustering
methods based on different intrinsic evaluation measures in Chapter 4
(Section 4.5.3), a 3-clustering result derived from a GAK kernel k-means
was chosen as the optimal clustering. To gain deeper insights into the
identified clusters, we started by visually analyzing some of their char-
acteristics. The following figures, Figure 6.5 and 6.6, illustrate the distri-
bution of the average feature values across the clusters and the number
of individuals in each cluster, respectively, providing a clearer picture of
the clustering structure.

Then, the clustering labels derived from that particular method are fur-
ther investigated to provide explanations regarding the formation of the
clusters. Thus, the goal is to uncover what is different among clusters,
meaning the important characteristics that drive each individual to be-
long to that specific cluster.

Taking as inputs the dataset X and the cluster labels, the proposed
framework for describing and explaining clustering can be employed.
According to the structure of the framework, for a 3-cluster grouping, a
set of 3 interpretable models is trained on all individual EMA data, each
aiming to predict one cluster over the rest. Therefore, the labels are
one-hot encoded and each one-hot vector is the output of one model.
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6.5.1. PERFORMANCE EVALUATION
Since the following analysis relies on the parameters derived from the 3
models, it is important to evaluate their effectiveness. The performance
is then compared against the individual component of temporal attention
and the baseline LSTM model. The assessment focuses on the ability of
each approach to predict the cluster labels (provided by the predefined
clustering) based on the EMA MTS data. After splitting the data into
training (first 70% of individual time-points) and test (last 30%) sets, the
accuracy, that is the number of correctly classified individuals (out of
187) is calculated. Each model was trained on the same training and
test datasets, ensuring consistency in evaluation. The averaged results
over the 3 models of each approach are presented in Table 6.1.

This comparison shows that the proposed framework performs at least
as well as both the baseline LSTM model and the individual attention-
based component. By effectively integrating the temporal and feature-
level attention mechanisms, all individuals are identified in the correct
cluster in the training set. On the test set, the framework correctly clas-
sified 105 out of 187 individuals, a slight improvement over the other
models, demonstrating a modest but meaningful gain in generalization.
Therefore, it is expected that the weights of a better-performing model
could more accurately reflect the description of the underlying prediction
task, which is the clustering. The rest of the analysis is conducted on the
training set of all individual data.

6.5.2. CLUSTER-LEVEL EXPLANATIONS THROUGH TEMPORAL
ATTENTION

To describe the characteristics of a cluster, the focus is on the model pre-
dicting that cluster label over the rest of the clusters. For example, for
the first cluster, Cluster0, the analysis is conducted on the parameters of
the first interpretable model, Model0. Regarding this model, the individ-
uals of the two classes, which means belonging to one cluster over the
rest of the clusters, are separately analyzed. Thus, by showing the av-
erage effects of the parameters of the individuals belonging to Cluster0,
we could provide some description of Cluster0. A similar procedure holds
when describing all different clusters. In other words, the parameters of
Model1 are used for describing Cluster1 and the parameters of Model2
for Cluster2. Then, across all 3 models, the individuals belonging to the
associated cluster, are separately analyzed.

As already discussed, to give an overview of the temporal effects on
cluster level, a correlation analysis is employed between the temporal
attention weights AT and the time-series of each feature. The average
correlation scores across all individuals of each cluster are presented in
Figure 6.7.

According to Figure 6.7, the important effects of features in distinguish-
ing each cluster from the rest are identified. It can easily be seen that
the patterns of the correlations of EMA features and temporal attention
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Table 6.1: Comparison of models performance across 187 individuals,
summarizing the training and test accuracy for three models.

Model Training Accuracy Test Accuracy

Baseline LSTM 144/187 100/187

Temporal-Attention 159/187 100/187

Proposed Framework 187/187 105/187
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Figure 6.7: Cluster-level average correlation effects between the tempo-
ral attention weights and the EMA features.

weights are mostly distinct for each of the clusters. Furthermore, particu-
lar high (low) correlations stand out. In Cluster0, "Negative Affect" (given
as NA), "Worried" and "Impulsivity" have strong negative correlations,
meaning that the high values of these features get a lower attention
weight. In Cluster1, almost all derived correlations are positive, with the
highest being for "Craving_Other", "Worried" and "Impulsivity", whereas,
in Cluster2, almost all correlations are in a stronger range, apart from
the feature "Craving_Other". Although a cluster description has been un-
covered by the analysis above, it still relies on the average (across all
individuals of a cluster) effects. In other words, some individuals’ effects
may deviate from the average ones. Thus, explanations at the individual
level should also be further explored.

Despite the first findings on clusters’ composition, the actual role of at-
tention has still been unclear. For instance, we need to understand what
it means to get a higher or lower attention score. Therefore, we could
analyze the average attention weights of individuals belonging to each
cluster (represented by Class1 in each model) or those not belonging to
that cluster (represented by Class0). As before, across all models, the av-
erage attention weight of all 187 individuals is shown in Figure 6.8 with
respect to their average values of one feature. In each sub-figure, all
187 individuals are shown, represented by a point and colored according
to their output class in each model. Regarding the coloring, these are
different on the first and second row of the figure: while on the first row,
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the real class label (0 or 1) is depicted, on the second row the actual
cluster label.

We notice that for Model0 and Model1, individuals belonging to Clus-
ter0 and Cluster1, respectively, get lower (on average) attention scores
than the rest. This could possibly reflect the fact that Class1 is always
the minority class compared to Class0. Thus, each model gives more
attention to the majority class. Nevertheless, the findings of Model3 are
not similarly clear. It is noticeable that the attention weights of Cluster0
and Cluster2 are slightly mixed, but getting lower values than Cluster1.
These unclear results should be further investigated as it may show that
the third cluster may not be needed.

Additionally, no significant effect is observed on the feature level. We
can see that individuals with average values ranging from 0.3 to 0.9 can
belong to all possible clusters. This is also apparent when plotting across
any other feature, where the same patterns are found.

In response to the overlapping attention weights of Cluster0 and Clus-
ter2, the similarities across clusters should be analyzed. Since our clus-
tering relies on the GAK similarities, these are plotted for all individuals.
In Figure 6.9, the similarities of all individuals (colored by their true clus-
ter) are depicted in Cluster1 and Cluster2. Practically, for each individual,
the average similarity to all the individuals of each cluster is given. Be-
cause of the limitations of a 2-dimensional plot, similarities to Cluster0
are not fully shown.

As expected, it is interesting to see that there is a similarity between
Cluster0 and Cluster2. Although individuals of Cluster0 have very low
similarity to Cluster1, lower than 0.05, most of them have a similarity
between 0.10 and 0.30 to Cluster2. This range is not far from the within-
cluster similarity which only reaches the level of 0.40. This comparable
level of similarity between and within clusters suggests that some in-
dividuals might share characteristics across clusters, adding a layer of
ambiguity in their cluster membership and highlighting shared features,
especially between Cluster0 and Cluster2. Such findings raise questions
regarding the quality and robustness of the chosen clustering. Therefore,
it is indicated that the current clustering method may not fully capture
the underlying heterogeneity of the dataset.

In the context of cluster-level analysis, beyond the initial feature-
related effects, we could further elaborate on the analysis using feature
interactions. For example, the interaction between two features, "Pos-
itive Affect" (PA) and "Negative Affect" (NA), along with the acquired
attention weight is shown in Figure 6.10. For each cluster, each point
represents a time-point of the individuals belonging to that cluster. Ac-
cording to this figure, different interaction patterns underlying each
cluster can be identified. More specifically, for Cluster0, high NA values
lead to low attention weights, whereas the opposite effect is seen for
Cluster1 and Cluster2. Although for Cluster0 and Cluster1, no visible
interactions were observed, a quite clear pattern is seen for Cluster2.
The combination of low PA and high NA leads to high attention weights,
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Figure 6.8: Relationship between "Positive Affect" and Temporal Attention
weights.

whereas high PA and low NA lead to lower attention weights. By ex-
ploring all possible feature interactions, we have the opportunity to get
more insights into the underlying structure of each cluster. Thus, the
potential distinctions could point to differences in which variables are
most relevant in characterizing each cluster.

6.5.3. CLUSTER-LEVEL EXPLANATIONS THROUGH FEATURE-LEVEL
ATTENTION

Regarding the learned feature-level attention weights, the raw AF weights
are directly analyzed. Similarly to the previous section, to get some in-
sights at a cluster-level, the average effects of all individuals within each
cluster are aggregated. The average feature-level attention weights for
each cluster are given in Figure 6.11. This figure of 12 × 12 heatmap
presents the asymmetric inter-relations among features, specifically
showing the relative contribution of Feature0 (x-axis) to Feature1 (y-
axis).

The averaged attention weights can be similarly interpreted as the rel-
ative importance of various features in distinguishing one cluster from
the rest. At first glance, it is noticeable that the same features emerge
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Figure 6.9: Similarities of all individuals to Cluster1 and Cluster2.
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tion.

across all clusters, "Enjoying Social Activities" and "In Control", but to a
different importance degree. For instance, this means that high values
of "Enjoying Social Activities" are assigned to high attention weights in
relation to any other variables. To illustrate this, an example of these in-
terconnections is given in Figure 6.12. More specifically, the association
of the average "Enjoying Social Activities" value with the average "Pos-
itive Affect" and "Crave Food" across all individuals within each cluster
is depicted in the first and second rows, respectively. Each point repre-
sents an individual belonging to a particular cluster. As expected from
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Figure 6.11, we can identify the high attention contribution of high val-
ues of "Enjoying Social Activities" to the other features along with other
interesting patterns. For instance, in Cluster2, high attention weights
are assigned to low values of "Crave Food" and high values of "Enjoying
Social Activities". By analyzing the feature interplay across all combi-
nations, from the perspective of feature-level attention, deeper insights
into the underlying dynamics can be uncovered. Thus, a more detailed
examination can highlight specific characteristics and patterns that are
important for distinguishing each cluster.

6.5.4. INDIVIDUAL-LEVEL EXPLANATIONS
While cluster-level analysis offers valuable insights into the commonali-
ties within clusters, undoubtedly it smooths over individual differences.
To more thoroughly understand the important patterns of cluster forma-
tion, it is essential to examine the data at the individual level as well.

Beyond unfolding the individual effects of the cluster-level analysis
conducted before, it is important to investigate the underlying interac-
tions of features in response to the attention weights learned by the
model dedicated to the cluster each individual belongs. The example of
the first individual, Individual0, belonging to Cluster2, is used for the rest
of the analysis. A detailed summary plot including all feature interactions
and their attention weights is presented in Figure 6.13. Particularly, for
each feature on the y-axis, all time-points of Individual0 are plotted, while
ordered according to their attention weights, and colored by the corre-
sponding feature value. Through this, we can have a detailed exploration
of the combinations of feature values that lead to higher attention. Ac-
cording to the model, higher attention weights show the important char-
acteristics for distinguishing individuals between clusters. Although it
was indicated before that on average low attention was assigned to indi-
viduals classified as Class1, which corresponds to Cluster0 and Cluster1,
this pattern was not that dominant for Cluster2. Thus, further investi-
gation of all individuals is necessary for a deeper understanding of the
distinct feature dynamics, especially in the case of Cluster2.

To more clearly understand the role of attention on each individual, the
differences in the weights learned by all models should be additionally
studied. Specifically, for each individual, feature interactions could be
compared against the attention weights derived from each model. This
could facilitate uncovering how much each feature interplay influences
each model’s decisions for each individual. An example of an individ-
ual belonging to Cluster2 is shown in Figure 6.14. By examining how
the same feature interactions are colored based on the 3 models, some
distinctions are apparent. For example, it is observed that the combina-
tion of high values in both "Positive Affect" and "Enjoying Social" leads
to higher weights for Model0, whereas to lower ones for Model2. Thus,
these patterns possibly reflect the impact that the specific time-points
have on predicting Cluster0 and Cluster2, respectively. Also, after the
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Figure 6.11: Cluster-level average feature-level attention weights.
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Figure 6.12: Feature-level Attention: Unfolding the inter-connection of
"Enjoying Social Activities" to two other features: "Positive
Affect" and "Crave Food".

previous indication that lower attention weights are linked to a particular
Cluster, the lower attention of Model2 could highlight the most relevant
information for predicting that individual as Cluster2. Therefore, such a
comparison offers valuable insights into how different models prioritize
and interpret the same set of features of an individual.
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Figure 6.14: The attention weights of the interaction between "Positive
Affect" and "Enjoying Social" derived from all 3 models.

6.6. DISCUSSION
In this chapter, the understudied problem of providing explanations on
clustering results in the context of MTS data is explored. A novel inter-
pretable framework is proposed and examined using a real-world EMA
dataset. To address the complexity of EMA data, our framework offers
interpretability by integrating 2 levels of attention mechanisms, in the
temporal and feature-level dimensions. Through its multi-aspect atten-
tion design (Section 6.4.4) and analysis (Section 6.4.5), this framework
eventually facilitates a deeper understanding of clustering, providing in-
terpretations of the important underlying patterns. Next, we focus on the
role of the multi-aspect framework’s design and analysis and the impact
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of prior applied clustering on interpretation and its validation.

6.6.1. THE ROLE OF THE MULTI-ASPECT ATTENTION
Although attention mechanisms have typically been employed in the
temporal dimension, the current approach of integrating multi-aspect
attention mechanisms, focusing on both temporal and feature levels,
has shown that it enhances the performance of the overall accuracy of
the downstream model. Based on Table 6.1, this integrated approach
improved the performance of all baseline methodologies, by predicting
more individuals in the correct clusters in training and test sets. While
the increase in test accuracy is modest, it suggests that the learned
model weights contribute to better distinguishing individuals across clus-
ters.

Moving to interpretability, the multi-aspect attention mechanism offers
detailed information on the data patterns each model considers impor-
tant. While temporal attention highlights the significance of particular
time-points, as shown in Figure 6.4, such information remains meaningful
on the individual level since each individual exhibits behaviors at differ-
ent time-points. To enrich the learned information and our understanding
on cluster-level, feature-level attention can additionally identify the im-
portant interconnection among features. Thus, incorporating both tem-
poral and feature-level attention enhances the interpretability of com-
plex data, such as EMA, where the understanding of dynamic patterns is
crucial.

6.6.2. THE ROLE OF THE MULTI-LEVEL ANALYSIS
The analysis of all learned attention weights is conducted at 2 levels,
cluster- and individual-level. The cluster-specific insights provide a deep
investigation of the commonalities as well as distinctions across clusters.
After aggregating the effects of all individuals in each cluster, we de-
rived the most influential time-points as well as the underlying features
(Figure 6.7) and feature interactions (6.11) based on a model’s decision-
making. Although some first cluster descriptions were derived, it should
be noted that the average effects smooth over the real individual differ-
ences. Therefore, to better understand each cluster formation, exam-
ining the data at the individual level is essential. This individual-level
analysis facilitates uncovering important feature interactions and pat-
terns unique to each individual (Figure 6.13), while also revealing how
each individual is reflected on the weights learned by models focusing
on different clusters (Figure 6.14).

6.6.3. THE IMPACT OF THE ALGORITHM-AGNOSTIC
META-CLUSTERING FRAMEWORK

A key advantage of the framework is its algorithm-agnostic nature re-
garding the generation of clustering labels. By design, as clustering is
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not integrated into the framework, it shows great flexibility allowing the
use of every possible clustering technique as a preliminary step. Thus, it
could be used as an effective tool for evaluating the result given by any
clustering method. This capability not only enhances the framework’s
utility but also broadens its applicability, enabling the comparison and
evaluation of clustering algorithms based on the quality and relevance
of the insights they produce.

However, it is reasonable that the quality of the clustering results uti-
lized in the framework plays an important role in the accuracy of the
explanations. In other words, when clustering labels are not robust, the
proposed framework would always provide some explanations on the
cluster- and individual-level importance effects, but without these be-
ing meaningful or accurate. This scenario may also apply to the chosen
clustering of our EMA dataset. Given that the true clusters are unknown
and the between-cluster similarities are found close, the examined clus-
tering may not represent the optimal solution. This can be caused by
the clustering algorithm utilized or the complexity of the data. Never-
theless, even when using that clustering, the framework was capable of
uncovering similarities in the influential data patterns of different clus-
ters, suggesting that a 2-clustering result may be more possible. There-
fore, regarding the evaluation of this framework, the clustering results
of other clustering algorithms should be investigated. This necessity
also comes since simulation studies on explanations are not typically
performed because in principles explanations tend to be subjective. This
issue of subjectivity is particularly observed in human-centric fields, like
EMA studies, where data inherently includes significant subjective varia-
tion. Consequently, evaluating the quality of explanations through objec-
tive criteria becomes quite challenging. Therefore, it is more appropriate
for explanations to be assessed by domain experts on a case-by-case
basis.

Furthermore, explanations could be enriched by using various types
of ground-truth information. This might include baseline data collected
before or during the study, which offers valuable contextual insights into
the examined individuals. For instance, demographic details or health-
related information, such as high depressive symptomatology, could be
used. Thus, such information provides crucial background that can help
interpret patterns and variations within the data.

6.7. CONCLUSION
This chapter presents an interpretable framework for explaining and
evaluating an MTS clustering result. By analyzing the attention-derived
important time-points and feature interactions at both cluster and in-
dividual levels. This dual-level analysis not only uncovers the patterns
and interactions that define each cluster, but also highlights unique in-
dividual contributions, offering a comprehensive understanding of the
clustering process.
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Such insights are particularly valuable in complex fields such as psy-
chopathology, where a better understanding of clustered individuals
could be beneficial for personalized interventions and mechanistic un-
derstanding. Therefore, this framework bridges the gap between data-
driven clustering methods and their practical interpretability, ensuring
that the results can be utilized effectively to address real-world chal-
lenges.

Having thoroughly examined the validity of clustering results in Chap-
ters 4, 5 and 6, the next step is to take advantage of this information
augmenting the personalized models. Specifically, Chapter 5 revealed
that incorporating data from clustering-derived similar individual pro-
files could improve the personalized predictive performance. Building
on these results, it is hypothesized that integrating clustering-based re-
sults in a more advanced way could further enhance the personalized ap-
proaches. This leads us to the exploration of transfer learning in the next
chapter, Chapter 7. By employing transfer learning methods, the aim
is to harness the rich information derived from clustering to strengthen
nomothetic approaches while focusing on personalized information. This
way, the idea is to take advantage of the insights gained from similar
individuals while prioritizing the target individual each time, capturing
both individual and group-level patterns for better predictive results.
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TRANSFER LEARNING

APPROACH FOR EMA MODELING

Considering the success of utilizing clustering-derived groups of sim-
ilar individuals to build group-based models that enhance the perfor-
mance of both personalized and using-all-data models, as investigated
in Chapter 5, the next step is to take advantage of similar individuals in
a more sophisticated modeling approach. In particular, transfer learning
approaches can be applied to improve predictions for a specific individual
(target domain) by incorporating data from other individuals (source do-
main). Among the existing transfer learning approaches, in this chapter,
boosting-based methodologies, focusing on enhancing Transfer Adaptive
Boosting (TrAdaBoost), are further explored. More specifically, the opti-
mal selection of similar source domains and the development of effective
weighting strategies, ensuring that the knowledge from relevant sources
is utilized in a way beneficial for the target, is emphasized.

Parts of this chapter have been published in

• M. Ntekouli, G. Spanakis, L. Waldorp, and A. Roefs. “Enhanced Boosting-based
Transfer Learning for Modeling Ecological Momentary Assessment Data”. In:
ML4ITS2023 - 3rd Workshop on Machine Learning for Irregular Time Series: Ad-
vances in Generative Models, Global Models and Self-Supervised Learning. ECML.
2024
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7.1. INTRODUCTION
Starting from Chapter 3, one of the primary objectives in modeling EMA
data is to develop accurate personalized models that could provide reli-
able descriptions about each individual. However, one of the main chal-
lenges in building personalized models is the limited number of data
points available for each individual. Small datasets often lead to overfit-
ted models without being capable of generalizing, or even to situations
where models cannot be trained at all. Thus, information collected from
other individuals in the same EMA study can be beneficial for modeling
[45]. To address this, Chapter 3 utilized nomothetic models that pool
data from multiple individuals, whereas Chapter 5 focused on clustering-
derived group models. Although such models improved personalized
performance by incorporating more data and capturing general patterns
reflective across individuals, it is hypothesized that they might ignore
important individual differences. Thus, there is a clear need for method-
ologies that can balance these approaches by integrating the benefits
of both personalized and group-based approaches. Such methodologies
can be derived from the concept of Transfer Learning.

Transfer learning is a Machine Learning (ML) paradigm where knowl-
edge gained from one domain (the source domain) is additionally used
to improve the performance in another domain (the target domain) [193,
194]. In the context of EMA data, transfer learning can be applied by in-
corporating data from multiple individuals (source domain) to enhance
personalized predictions for a specific individual (target domain) [195].
While individuals may originate from the same data collection, they are
not necessarily considered part of a statistically homogeneous popu-
lation. Variations in data availability, patterns, and temporal dynam-
ics across individuals almost always introduce challenges that resem-
ble transfer learning scenarios [196]. Transfer learning can be particu-
larly beneficial in cases where the target individual has limited data but
shares similarities with individuals in the source domain. By transferring
knowledge from a larger, similar dataset, it is possible to enhance EMA
modeling for the target individual effectively. Therefore, the main objec-
tive of the chapter is to investigate whether transferring knowledge from
other individuals could improve individual predictive performance using
a real-world EMA dataset.

Among various existing transfer learning approaches, boosting-based
methodologies are explored in the current chapter. In particular, a
methodology adapted from transfer learning using Adaptive Boosting
(AdaBoost) is investigated, taking advantage of both boosting and sam-
ple reweighting strategies [197]. Boosting algorithms aim to build an
ensemble of predictive models, iteratively adjusting the weights of all
data points (instances) depending on their misclassification rate and
whether they belong to the target or source domain. Misclassification
is determined by evaluating the model’s predictions at each iteration:
if the predicted label for a data point does not match the actual la-
bel, it is considered misclassified. For the misclassified instances in the
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source domain, weight updating is based on the similarity to the target
individual, whereas instances in the target domain should be more in-
fluential. Thus, the impact of different reweighting strategies as well as
the number of similar source individuals are thoroughly investigated in a
way to ultimately improve individual performance. Regarding the source
data, different approaches are explored for selecting the optimal set of
individuals, including similarity-based and clustering-derived results.

7.2. RELATED WORK
Transfer learning is an advanced ML paradigm that aims to improve
the performance of a target domain or task by incorporating knowledge
from a related source domain or task. Comprehensive reviews of trans-
fer learning strategies and their applications can be found in [194, 198,
199]. Specifically, various advanced transfer-learning strategies have
been proposed, focusing on sharing model-related information. The
learnable information includes model parameters, feature-based trans-
formations, and instance-based weights. Figure 7.1 provides an overview
of the first two, illustrating their use in transfer learning for adapting and
enhancing model performance for target tasks. Building mostly on large
deep learning models, parameter-sharing strategies involve learning
from models trained on source data and fine-tuning (adapting) the tar-
get dataset by freezing some deep learning layers and allowing others
to learn during training [200]. Feature-based transfer learning utilizes
learned transformations or frozen layers from the pre-trained model, us-
ing these as inputs for training on the target data to benefit from robust
representations [201].

These techniques have seen a wide application in deep learning, es-
pecially in fields like computer vision (e.g., [202]) and natural language
processing (e.g., [203]), where data across different datasets or domains
are widely available. However, since in our case all data come from the
same data collection, and the dataset is not that large, instance-based
transfer learning is further explored [193].

Instance-based transfer learning is the most straightforward way of
sharing additional information by providing models with more input data
[204]. Importantly, this is possible within the concept of domain adapta-
tion, where target and source data share the same feature space, coming
from the same domain or EMA data collection [205]. While data pooling
remains a valid initial strategy, it does not differentiate the influence be-
tween target and source data. This is not always optimal particularly
when source data outnumbers the target data leading to a higher influ-
ence from the source [196, 206]. Such an issue is still under-explored
since most existing instance-based transfer methods fail to adequately
balance the contribution of target and source. Therefore, it is essential
to study and apply balancing approaches where appropriate instances’
reweighting could guide the optimal selection of instances in source in-
dividuals. Specifically, methods inspired by boosting, such as Trans-
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Figure 7.1: Learned knowledge for transfer learning.

fer AdaBoost (TrAdaBoost), can provide a more effective solution [197].
TrAdaBoost extends the concept of boosting, combining multiple weak
learners (small and low-performed models) into a stronger one, by dy-
namically reweighting source and target instances across iterations. It
reduces the weight of source instances that negatively impact the target
task while increasing the emphasis on target instances and beneficial
source data. This iterative process ensures that the resulting model not
only utilizes valuable knowledge from the source domain to improve pre-
dictive performance on the target domain but also promotes distribution
invariance across different domains [207]. By aligning the distributions
within a shared feature space, the model ensures robustness and gener-
alizability, even when there are differences in the underlying data distri-
butions between source and target.

Nevertheless, according to previous research [73, 208], several lim-
itations of TrAdaBoost have been identified that need to be taken into
account and handled accordingly.

• Its learning process is highly prone to negative inference, which oc-
curs when the knowledge transferred from the source domain ob-
scures, rather than helps, the learning process in the target do-
main. This issue arises when the source domain data is not suffi-
ciently similar to the target. In such cases, instead of enhancing the
model’s predictive capability, the transferred information may intro-
duce noise and biases that adversely affect the learning process.

• The utilized reweighting strategy causes the weights of source in-
stances to decrease progressively, eventually converging to zero.
Based on the reweighting effects, misclassified instances in the
source get lower and lower weights, minimizing their influence.
Even the correctly classified source data, whose weights are ex-
pected to remain stable, get a gradual reduction because of the
relative increase in the target. Therefore, the impact of the source
is minimal.
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• In the case of imbalanced datasets, where the distribution of class
labels is not uniform, the prediction of the minority instances can
become challenging. This happens because the model tends to be
biased toward the majority class, as it is more represented during
training. When minority instances are scarce in the target dataset,
the model may fail to generalize without being able to predict un-
derrepresented instances, potentially leading to poor performance
in rare but important cases.

• TrAdaBoost can be computationally demanding, requiring multiple
runs of training weak learners and reweighting instances. The ef-
fect is more challenging in the case of large datasets or real-time
applications.

7.3. METHODOLOGY
This section starts by introducing how TrAdaBoost can be effectively ap-
plied to EMA data. Having also identified the issues inherent in TrAd-
aBoost, we illustrate these challenges and present the associated en-
hancements of this approach.

7.3.1. TRADABOOST ON EMA DATA
During an EMA study, data from multiple individuals are typically col-
lected, all represented by the same set of variables. This is a key char-
acteristic that makes EMA a promising application of transfer learning. In
this setting, starting from one individual as the target domain, the goal of
TrAdaBoost is to accurately predict the 1-lag future data points collected
from that particular individual. In addition to the target data, the model
gets input data from other available individuals, referred to as source
domain data. Incorporating data from other individuals has the poten-
tial to enhance the model’s ability to generalize and improve predictions
for individuals with insufficient data, in terms of both size and quality.
However, as already discussed, selecting the appropriate source data is
crucial, as it can significantly affect individual performance. Therefore,
it is crucial to explore different options for determining the optimal num-
ber of sources and assessing their relevance to the target. Regarding
relevance, different methods for identifying the most similar individuals
of the source are investigated. Given the nature of time-series data,
temporally-oriented Dynamic Time Warping (DTW) distance or Global
Alignment Kernel (GAK) similarity can be applied [85]. According to these
measures, various sets of source data can be explored by keeping the
most similar one each time.

Alternatively, more advanced approaches using clustering approaches
can be utilized to discover the most similar individuals based on the
derived clusters. By grouping individuals into clusters, the number of
sources used can differ among individuals, depending on the number of
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individuals in each cluster. For example, if clusters are not balanced,
some individuals are trained using a higher number of source data than
others. Such information can be used in the subsequent modeling steps.

7.3.2. MODELING PROCESS
During the TrAdaBoost modeling process, a number of boosting iterations
take place, where several important steps are involved. These mainly
include training a weak learner (or classifier for a classification task),
calculating the training error, reweighting all the instances in the target
and source domain, and normalizing the weights. The whole TrAdaBoost
modeling process is depicted in Figure 7.2. Finally, after all iterations,
the predictions of all weak learners need to be combined using an aggre-
gation strategy. More specifically, all the proposed enhancements are
described below.

Figure 7.2: The iterative TrAdaBoost modeling process over r iterations
for one individual as target and one individual as source. Each
iteration involves: normalizing the weights, training a weak
learner, calculating the training error, and reweighting all the
instances in the target and source domain.

CHANGING THE ERROR METRIC: WEIGHTED F1 SCORE
According to all boosting algorithms, the training error at each iteration
plays a significant role in the learning process, as it is involved in all
weight updating and predictions’ aggregation strategies. All boosting al-
gorithms typically use the weighted average of the absolute error during
training between the true label y and the predicted label y′. However,
the absolute error may not be optimal in scenarios where the data is
imbalanced. To address this and take into account the error for both mi-
nority and majority classes, a modified training error metric is proposed
based on the F1 score. More specifically, using the weighted average of
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an error based on the F1 score (defined as 1 − F1) provides a more rep-
resentative measure reflecting the misclassification rate of both majority
and minority classes.

As observed in Figure 7.2, the errors typically vary a lot across itera-
tions in an attempt to correct predictions for the most challenging data
points. It should be noted that an overall decrease is not necessarily ex-
pected because the goal is that different weak learners focus on different
parts of the data.

TARGET AND SOURCE REWEIGHTING STRATEGY
Subsequently, the derived training error is used to update the weights for
each instance in the target domain (trget). According to the updating
Equation 7.1, the error, errorr , is mainly utilized on the changing/learning
rate, represented by the parameter βr for each iteration (or round) r.

trget
r+1 =trget

r · β
−|ytrget−y

′
trget ,r

|
r , where βr =

errorr

1 − errorr
(7.1)

To retain the originally designed updating effects, which aims to in-
crease the misclassified instances as expressed by β−|y−y

′ |
r ), the basis of

the exponential βr is constrained between 0 and 1. Subsequently, the
weighted error errorr should be lower than 0.5. Because of the expo-
nential expression, this threshold is crucial for the validity of the whole
process, so any errorr greater than 0.5 is forced to be 0.5. This adjust-
ment indicates that the original procedure may not have been entirely
fair, as iterations with 0.5 < errorr < 1 were effectively disregarded. To
make use of all calculated errors and simplify the process, our approach
adapts the learning rate to be based on the weighted F1 score 1 − Fr1.
The update of weights (from r+1 to r) for a target instance (trget)
is shown in Equation 7.2.

trget
r+1 =trget

r · (1 − Fr1)
−|ytrget−y

′
trget ,r

|
(7.2)

sorce
r+1 =sorce

r · β
|ysorce−y

′
sorce,r

|

0 (7.3)

Moving to the core of the boosting concept, the original weight adjust-
ment ensures that the model focuses on the harder instances in the next
training iterations. Initially, all instances have equal weights. As train-
ing progresses, instances that are misclassified receive higher weights,
increasing their importance in the training process (already seen in Fig-
ure 7.2). Although it may take several iterations until the harder target
instances are correctly classified, these are supposed to be useful since
they come from the target domain or individual of interest. However, this
concept is not always applicable to the source. The misclassified source
instances generally indicate that they may not be valuable for the target
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and thus should get decreased weights expressed by β|y−y
′ |

0 (with a fixed
β0 rate according to Equation 7.3) [197]. Although this is sometimes
plausible, some source instances could have been misclassified because
they are hard or challenging but valuable instances. In such cases, the
algorithm may need several iterations for these being correctly classi-
fied. Thus, in our approach, we explore updating strategies that initially
increase and then decrease the weights of the misclassified source data.
The number of previous consecutive iterations (steps) where an instance
can be wrongly classified but still has its weight increased, is a chosen
hyperparameter step. If this specified number of steps is exceeded and
it is not correctly classified yet, its weights start decreasing, as it should
according to the original source updating strategy. The proposed source
updating equations are presented in Equation 7.4.

sorce
r+1 =sorce

r · β
−s·|ysorce−y

′
sorce,r

|

0 , if
r−step
∏

r
|ysorce − y

′
sorce,r

| = 0

sorce
r+1 =sorce

r · β
s·|ysorce−y

′
sorce,r

|

0 , if
t−step
∏

r
|ysorce − y

′
sorce,r

| = 1

(7.4)

As introduced in Equation 7.4, the source weights are updated not only
based on the classification errors but also considering the relevance and
similarity (s) to the target domain. If a misclassified source is highly sim-
ilar to the target, there is a high probability that this is relevant despite
the misclassification. Therefore, data from different sources should be
updated differently based on their similarity level to the target. For ex-
ample, in case of a misclassified but similar to the target source instance,
the weight decrease should be less severe compared to less similar data.
Through this, the model does not completely disregard potentially valu-
able data from the source domain, maintaining a balance between simi-
larity and the impact of errors.

WEIGHTS NORMALIZATION
In Transfer AdaBoost, normalizing the weights of both target and source
instances is an important step of each iteration to prevent excessive
increases in target instance weights. However, significant issues arise
when normalizing all weights together. When the weight updating strat-
egy causes a proportion of weights to be increased or decreased and
then all are normalized, the actual relative differences change. This leads
to three main issues that can impact the learning process and the bal-
ance between target and source data.

The first issue is that the normalization process can cause changes
to be either stronger or less impactful than intended, depending on the
other weight adjustments. For example, when the weights of misclassi-
fied instances in the source domain decrease and are compared to the
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potentially increased weights in the target, the decreased weights de-
crease even more when normalized, as depicted in Figure 7.3a. When
weights have already decreased a lot, any attempts of change are not
impactful or visible. Similarly, as shown in Figure 7.3b, the weights
of the correctly classified source instances that should remain stable,
when compared to the overall increase of other instances, also even-
tually decrease after normalization. Consequently, normalization drives
the source’s contribution to diminish due to the weights convergence to
zero.

Furthermore, normalization can change the effect of the desired up-
date. According to all equations above, during the same phases of pre-
diction (i.e., consecutive iterations leading to the same prediction for an
instance), the effect of change in weights should be the same, either
weight increase or decrease. However, according to Figure 7.3c, there
are obvious changes during the same phases.

To address the first issue, it is important to normalize the weights of tar-
get and each source separately. This facilitates maintaining the unique
characteristics and importance of instances within each domain. How-
ever, in this case, depending on the number of instances in each source,
data in the source can overpower the data in the target. To prevent this,
a 50% threshold is set for the normalization of source weights.

In a way to handle the issue regarding the change of expected effects
in the target domain, a slight increase in the originally steady weights is
necessary. This adjustment ensures that the contribution of the correctly
classified target instances is not diminished by the normalization pro-
cess, maintaining to some extent its level of importance for the following
iterations. This is described in Equation 7.5, where the zero difference of
|ytrget − y′trget,r | is adjusted by a parameter ε. This parameter can be
optimized based on the examined data, and for this setting, ε = 0.2 is
selected. By all these adjustment strategies, the model can more effec-
tively take advantage of target and source, but also balance the influence
of the correctly classified instances, potentially leading to an improved
performance.

trget
r+1 =trget

r · (1 − Fr1)
−ε, when ytrget − y

′
trget,r

= 0 (7.5)

PREDICTIONS AGGREGATION
After the specified number of iterations, where all weak learners have
been sequentially trained, their predictions need to be combined in a
way to produce a strong final prediction. Using AdaBoost, the predictions
are aggregated through weighted voting, where each model’s contribu-
tion is proportional to its accuracy. However, in TrAdaBoost, more com-
plicated formulas are used for calculating each model’s contribution and
eventually, the aggregation of the last half iterations [197]. To simplify
this, in our approach, a weighted average approach is used, where each
model’s prediction y

′

,r of sample  at iteration r is weighted according to
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Figure 7.3: Examples of the normalization issues. The orange line repre-
sents the weights of a source/target instance over 100 itera-
tions, while the blue line shows the predicted labels y′,r (0 or
1) that cause the weight changes.

its Fr1 performance. This is described in Equation 7.6. This way, while the
learners of all iterations participate in determining the final prediction y′ ,
good-performing models have more influence on the final decision.

y
′

 =

∑

r F
r
1 · y

′

,r
∑

r F
r
1

(7.6) AUC =

∑

r F
r
1 · AUCr
∑

r F
r
1

(7.7)

Similarly, for calculating the aggregated Area Under the Receiver Op-
erating Characteristic Curve (AUC) metric, several approaches can be
considered. A solution is given by using the F1-based weighted aver-
age of probabilities, which are then used for calculating the final AUC.
Alternatively, another solution is to calculate the probabilities and sub-
sequently compute the AUC metric for each learner, denoted as AUCr .
According to Equation 7.7, a weighted average of these AUC scores can
be obtained using F1-based weights for each learner, resulting in an over-
all AUC score, AUC. In this analysis, the latter method will be employed
to ensure that each learner’s contribution is appropriately reflected in
the final metric.

7.4. EXPERIMENTAL SETUP
7.4.1. EXAMINED EMA DATASET
The examined EMA dataset is the real-world NSMD dataset, described
in Section 2.6. Before modeling, EMA data preprocessing is crucial in
preparing both target and source data. The initial step in this process
involves splitting the data into training and test subsets. Each individ-
ual’s data is divided using always a 70:30 split ratio. Because these are
time-series data, the split is performed sequentially and not randomly,
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meaning that the first 70% is used for training and the last 30% for test-
ing. For a fair comparison, all models are evaluated on the test sets of
each individual in the target. The next preprocessing step is data nor-
malization. Each individual dataset is normalized separately on training
and test sets, allowing for transforming and aligning the feature space
across target and source.

7.4.2. OUTPUT TASK
In this setting, the output task is 1-lag binary classification. This means
that for all variables at time-point t− 1, we aim to predict all correspond-
ing variables at time-point t. Due to an observed sparsity in the original
1 − 7 scale, the variables at time-point t are dichotomized, transform-
ing them into binary outcomes regarding their relation to the average of
each individual variable. This approach focuses on predicting whether
each variable changes towards a positive or negative state from one
time-point to the next, without accessing the exact rating. Thus, this set-
ting facilitates a more straightforward analysis, predicting the variables’
point-to-point transition.

7.4.3. EXPERIMENTAL SETTING
VALIDATION METRIC

Since the task is multivariate binary classification, the evaluation of the
proposed Transfer AdaBoost approach is conducted using appropriate
classification metrics, averaged across all variables. Given the sparsity in
each output variable, it is important to note that our individual datasets
are quite imbalanced. To address this, two metrics that take into account
such output characteristics are the F1 score and AUC. Through these, the
focus is equally split on the correct classification of both majority and mi-
nority classes. While using AUC, where different classification thresholds
are considered in calculations, the performance reflects both imbalanced
classes.

BASE LEARNER

In each iteration, when focusing on a specific target individual, a weak
classifier is trained using the training data of the target and the utilized
source data. This learner is typically a simple algorithm, such as a de-
cision stump, where the ensemble of all these could lead to a strong
classifier. In the current experiments, a decision tree with its depth set
to 2 is used as the base learner. Given that the total number of iterations
is set to 100, 100 base learners are trained to target one individual. This
process will be repeated for all available individuals and all 12 variables
separately, resulting in the training of 2244 models for each examined
case that are discussed below.
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BASELINE COMPARISONS

To assess the performance of the proposed improvements in the Trans-
fer AdaBoost approach, we need to conduct some baseline comparisons
against several approaches:

• Personalized classification using the examined base learner (Deci-
sion tree with depth equal to 2): Only the training data of the target
is used to train the model that is later examined in a transfer learn-
ing scenario.

• Personalized classification using AdaBoost and Explainable Boosting
Machines (EBMs, as described in Section 2.4): In a personalized
setting, a model is trained only on the target domain data without
incorporating any source domain data.

• Original TrAdaBoost classification: The original implementation of
TrAdaBoost is trained using data from 2 and 10 similar sources.

7.5. EXPERIMENTAL RESULTS
In this section, a thorough analysis of the different experimental choices
made in the proposed Transfer AdaBoost approach is presented. Specifi-
cally, in Experiment A, we examine the impact of varying the number of
individuals in the source domain as well as the method of updating the
source weights on the overall performance. The overall performance is
evaluated in terms of F1 score, averaged over all 12 variables. After iden-
tifying the optimal experimental setting for TrAdaBoost, in Experiment B,
we compare this with some baseline modeling approaches.

7.5.1. EXPERIMENT A
To explore the optimal number of sources, we conducted experiments us-
ing different numbers of sources, where always the most similar, in terms
of GAK, are used. For instance, we compared the performance of using
the single most similar source domain for each target against combining
multiple source domains, with a maximum of the 10 most similar. At the
same time, different source reweighting strategies are examined. These
include the proposed strategy of Section 7.3.2, involving both source
weights increase and decrease, and the original concept of weight de-
creasing. For the proposed approach, the impact of different numbers of
step is also examined. All the examined strategies have been adapted to
the changes proposed in Section 7.3.2. Figure 7.4 presents the boxplots
of the F1 performance results across all 187 individuals.

The extracted results reveal distinct trends regarding the optimal num-
ber of sources based on the source reweighting strategy employed.
Starting with a single source domain, all reweighting strategies yielded
a similar performance, with the original weight-decreasing strategy pro-
viding the highest average F1 score at 0.51. This was followed by the
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Figure 7.4: Comparison of experimental settings.

increasing strategy with step = 3 and step = 1. The same trend con-
tinued, with decreasing scores, until incorporating four or more sources.
After this point, the performance of the increasing strategy with step = 1
starts rising significantly, with the average value converging to approx-
imately 0.53. This shows that additional sources can provide valuable
information and improve performance depending on how we deal with
the weights of the source data. On the contrary, for some strategies,
more source data is being handled like noise.

It should also be noted that the relative individual performance also
depends on the similarity degree of sources to each target. Although
the sources are particularly selected for each target, always picking the
most similar ones in each case, the level of similarity can still vary. Some
sources are more closely related to the target than others. Especially,
when the number of sources increases, it becomes less likely that all
sources will be highly similar to the target. This is also indicated by the
fact that a milder increasing (step = 1) approach starts becoming effec-
tive as more sources are added, while for a small number of sources,
weight increasing with step = 3 shows a better performance. Future ex-
periments could explore a more refined approach by setting a threshold
on the similarity degree between the target and the selected sources.
This strategy would ensure that only the most relevant sources are uti-
lized, leading to a more focused and effective transfer of knowledge.
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7.5.2. EXPERIMENT B
To further investigate the impact of the proposed methodology for TrAd-
aBoost, a thorough comparison was conducted against several baseline
methods. These methods include both personalized models without any
transfer learning components (Decision Tree, AdaBoost and EBMs) and
original TrAdaBoost (using 1 and 10 sources). The aim is to evaluate the
effectiveness of our proposed approach in two scenarios. Beyond the
best scenario identified through Experiment A, we examine a scenario
where the sources are selected based on a clustering result, referred to
as TrAda_cl. Specifically, as derived from Chapter 4 (Section 4.5.3), we
apply kernel k-means clustering (using the GAK similarity and k = 3) to
group the EMA data and then use the individuals of the same cluster as
sources. The produced F1 and AUC scores are demonstrated in Figures
7.5 and 7.6, respectively.
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Figure 7.5: Comparison of the proposed TrAdaBoost enhancements
(TrAda) based on F1 scores against baseline approaches, in-
cluding personalized methods (Tree, AdaBoost, EBMs) and the
original implementation of TrAdaBoost using 2 (TrAdaOr_s2)
and 10 (TrAdaOr_s10) sources. For the proposed TrAdaBoost
enhancements, the two distributions (highlighted in orange)
represent the incorporation of 7 sources (TrAda_s7) and
sources derived from clustering (TrAda_cl).

The proposed enhancements in TrAdaBoost provide the highest F1
scores, demonstrating the effectiveness of our refined approach, reach-
ing an F1 score of 0.53. The clustering-based source selection also shows
promising results, especially if we consider all the statistical properties
of the individuals’ distribution. This suggests that using structurally sim-
ilar sources can further enhance the performance. Although the average
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Figure 7.6: Comparison of the proposed TrAdaBoost enhancements
(TrAda) based on AUC scores against baseline approaches, in-
cluding personalized methods (Tree, AdaBoost, EBMs) and the
original implementation of TrAdaBoost using 2 (TrAdaOr_s2)
and 10 (TrAdaOr_s10) sources. For the proposed TrAdaBoost
enhancements, the two distributions (highlighted in orange)
represent the incorporation of 7 sources (TrAda_s7) and
sources derived from clustering (TrAda_cl).

improvement compared to personalized models is not significant, further
statistical analysis revealed that 132 out of 187 individuals achieved an
improved F1 score (average increase of 5.1%) compared to trees, while
116 individuals (average increase of 3.5%) compared to both AdaBoost
and EBMs. This indicates that additional information improves the major-
ity of individuals, but not all, compared to the simple models. Therefore,
a more extensive exploration should be performed on an individual- and
feature- level to determine which cases have the potential to be im-
proved. For instance, it is expected that transfer learning can improve
predictive performance in scenarios with limited target data. Moreover,
a similar trend is observed when comparing the baseline models against
the AUC scores in Figure 7.6, with the enhanced TrAdaBoost models
yielding the highest performance. More specifically, we can distinguish
a slightly elevated average score for both EBMs and TrAda_cl reaching
an average of 0.57 and 0.6, respectively. The potential of incorporating
clustering is further highlighted by the AUC scores over personalized
models, with clustering-based TrAdaBoost showing an improvement of
7.5% compared to tree models, 10.7% compared to AdaBoost, and 4.8%
compared to EBMs. This demonstrates its significant contribution to
enhancing the modeling process.

It is also interesting to notice that the original TrAdaBoost, when us-
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ing either a single or multiple sources, exhibits very poor performance
on our dataset. This was expected based on all the issues discussed in
Section 7.2. Despite utilizing the same set of similar sources, the low
scores could be attributed to the original modeling processes regarding
weight updating and, most importantly, prediction aggregation, where
only the last half of the iterations are taken into account. Such poor
performance highlights the need for improved methodologies in transfer
learning. Our proposed approach addresses these limitations by incor-
porating a more sophisticated weighting strategy and thoroughly eval-
uating the relevance of source data. These enhancements help ensure
that the model is not only more adaptable but also achieves improved
predictive accuracy and reliability across diverse individuals.

7.6. CONCLUSION
In a way to balance the personalized and nomothetic modeling ap-
proaches, this chapter presents an enhanced version of Transfer Ad-
aBoost aiming to improve the predictive performance of individual EMA-
based models. After identifying and discussing the issues of the original
implementation of TrAdaBoost, our proposed methodological enhance-
ments address various aspects of the modeling processes. More specif-
ically, our approach focuses on the optimal selection of similar source
domains as well as their careful exploitation, through advanced source
reweighting strategies. After a set of experiments investigating the im-
pact of all these choices, the results highlight that the initial source
weight increase is a necessary step, emphasizing the difficult source
instances before it is determined whether they may not significantly con-
tribute to the target. In that case, incorporating more source domains
also positively impacts the overall performance. Compared to the base-
line methods, the proposed approach proved to outperform the original
TrAdaBoost, but the average performance gain over personalized models
was not significant. Interestingly, when examining the average percent-
age of individual differences, the improvement in F1 score reaches 5.1%.
This suggests that, whereas our proposed methodology provides a more
advanced approach to transfer learning, a thorough investigation is nec-
essary to identify the specific cases where it may not be very effective.
For instance, when there is a significant distribution shift between the
training and test data for each target individual, the transfer learning
model may struggle to generalize effectively. Additionally, when a tar-
get individual’s characteristics do not sufficiently match those of the
selected source data, the knowledge transfer may be less effective. In
such cases, incorporating a threshold cutoff to determine the minimum
similarity between target and source individuals could serve as an alter-
native strategy. This would help ensure that only sufficiently relevant
source data is used, potentially enhancing the model’s performance and
reliability.



8
CONCLUSIONS AND FUTURE

DIRECTIONS

This dissertation addressed significant challenges in the field of psycho-
pathology, specifically within the context of modeling Ecological Momen-
tary Assessment (EMA) data. The primary objective was to develop more
advanced predictive models than the baseline linear network models,
improving their accuracy and robustness. Such advanced models could
better reflect individual EMA patterns and ultimately facilitate our under-
standing of mental disorders. This research systematically explored and
evaluated various predictive modeling approaches, focusing on both in-
dividual and group levels. A significant part of this work was dedicated to
various methodologies for identifying homogeneous groups of individu-
als as well as effectively utilizing these groupings to improve model pre-
dictive accuracy and personalization. By taking advantage of individual
variability and commonalities within data, this work could provide addi-
tional enhancement towards refining individual or personalized models.

This chapter provides a summary of the contributions of this disserta-
tion, discussing how each of the initial research questions was addressed.
Finally, the chapter concludes by proposing potential directions for fu-
ture work. These suggestions aim to explore more advanced integration
of group-based approaches and expand the understanding of individual
dynamics and patterns shared within groups in psychopathology.

8.1. ADDRESSING RESEARCH QUESTIONS
At the beginning of this dissertation, in Section 1.7, five different re-
search questions were defined. All these are separately discussed as
follows:
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RQ1

Are non-linear individual models capable of outperforming the lin-
ear network models?

Research Question 1 (Chapter 3) explored the effectiveness of linear
and non-linear personalized modeling approaches for analyzing EMA
data. Although, traditionally, this research area has been dominated
by network models [26, 37], which are linear, this chapter went a step
further towards introducing the use of non-linear ML models. Non-linear
models, such as decision tree-based models, have been widely used
models known for their ability to extract complex, non-obvious patterns
that linear models might ignore. Discovering such patterns is particularly
crucial in the field of psychopathology, where the inherent complexity of
mental disorders frequently presents non-linear dynamics and involves
non-linear interactions.

Among various non-linear models that were examined, a recent im-
plementation of Explainable Boosting Machines (EBMs) emerged as a
prominent example [105, 106]. EBMs represent a sophisticated type of
boosting-based model that integrates flexible, non-linear feature func-
tions along with pairwise feature interactions. Through such functions,
EBMs can effectively model complex relationships within the data while
maintaining interpretability. The interpretability with state-of-the-art ac-
curacy scores reported in other published works (e.g., [107]) made them
particularly valuable in psychopathology. Motivated by these strengths,
we further extended the investigation into their application across differ-
ent output tasks and chapters, specifically in Chapters 5 and 7.

After applying advanced non-linear techniques, experimental results
have demonstrated potential for improving modeling accuracy across dif-
ferent classification scenarios, predicting the occurrence of future EMA-
relevant events within psychopathology. Specifically, these were tested
using both real-world and synthetic datasets. In real-world datasets, the
distribution of AUC scores for non-linear models showed less variability
compared to linear ones, showing greater consistency among individu-
als’ results. Nevertheless, it is important to note that model performance
significantly depends on the size and quality of the data characteristics
specific to each individual, leading to varied results across individuals,
datasets, and the models examined. Moreover, the generation and uti-
lization of synthetic data, which was crucial in addressing the challenge
of limited data availability, played an important role in this research.
These synthetic datasets, designed to mimic real-world conditions, were
further explored in Chapter 4.

The shift from traditional linear models to advanced non-linear meth-
ods marks a significant advancement in EMA modeling. This transition
is driven by the need for more accurate and robust individual predic-
tions. Consequently, these improved models could provide more reliable
descriptions of different individuals, capturing their complex underlying
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dynamics.

RQ2

Could nomothetic modeling approaches, by integrating more data,
exceed the predictive performance of individual models?

Two different research directions were explored to investigate the ef-
fectiveness of nomothetic or group-based modeling approaches and an-
swer this research question. The first approach involved training models
on aggregated data (referred to as using-all-data models), which includes
data from all available individuals within the same data collection (popu-
lation data). This offers the opportunity to capture patterns of behaviors
and processes that are shared between individuals. Models developed
from such aggregated data capture broader patterns across individuals,
making them useful in situations where personalization is not possible
due to a lack of individual data. Such models can then be effectively
applied to new individuals who were not included in the original dataset.
However, the generalizability of these models depends on the similarity
between the individuals in the training data and those in the target pop-
ulation. Extensive experiments, conducted in Chapter 3, demonstrated
successful performance on both synthetic and real-world datasets, with
high AUC scores achieved when predicting 1-lag events. Particularly, in
the challenging ThinkSlim2 dataset [123], it is interesting to notice that
the AUC performance shows an average improvement of 14% compared
to the relatively poor performance of personalized models.

Building on this success, the second approach focused on further refin-
ing the process of selecting individuals to form cohesive sub-population
groups, and, hence optimizing the input of group-based models. Through
clustering, the aim is to produce accurate and meaningful groupings,
ensuring that the derived cluster-based models are tailored to the dis-
tinct characteristics of grouped individuals. In Chapter 5, after having
explored two model-based clustering methods, their effectiveness was
evaluated in a downstream forecasting task. The results highlighted that
clustering was found to enhance the overall forecasting performance,
compared to the personalized, aggregated as well as randomized cluster
models. Thus, the results confirmed that the superiority of clustering per-
formance is not a random effect arising from the use of a mixture of mod-
els. Specifically, clustering enhanced the overall performance, achieving
a maximum of 7.19% MSE improvement over personalized models and
7.99% over the using-all-data models.

The insights gained from both approaches demonstrate that incorpo-
rating additional information from other individuals can significantly en-
hance models’ predictive accuracy and relevance in complex scenar-
ios. While personalized models offer several advantages, particularly
in cases where sufficient individual data is available, the results of this
research indicated that nomothetic methods by integrating population-
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level and sub-population group (or cluster) information can enhance the
relevance and generalization of predictive models. This approach is es-
pecially beneficial in the context of psychopathology, where individual
data is often limited, and understanding shared behavioral patterns can
lead to better interventions and treatment strategies.

RQ3

How could nomothetic modeling approaches effectively integrate
group-based information while maintaining the focus on individual
data?

Having identified the strengths and weaknesses of different model-
ing strategies, including idiographic as well as nomothetic and cluster-
based approaches, the focus shifted towards achieving a balance be-
tween models that are either too broad or overfit to a particular indi-
vidual. To address this question, we proposed two methodologies inte-
grating both group- and individual-focused strategies. First, we proposed
the Knowledge Distillation (KD) approach in Chapter 3 [74]. This ap-
proach strengthens the using-all-data nomothetic model, by sequentially
integrating personalized models. According to the evaluation results on
both synthetic and real-world data, the performance of the KD method
improved significantly, showing a maximum AUC improvement of 17%
compared to personalized models and achieving results comparable to
using-all-data models.

Second, another transfer learning approach was investigated in Chap-
ter 7, taking advantage of both boosting and sample-weighting strate-
gies tailored to different individuals (target and source data) to enhance
the 1-lag predictive performance of all psychopathology-related vari-
ables. Inspired by the TrAdaBoost methodology [197], this chapter fo-
cused on adapting it to the context of EMA and enhancing most of the
parts in the training process, including training a weak classifier, calcu-
lating the training error, reweighting all the instances in the target and
source domain, and normalizing the weights. Since all these method-
ological enhancements play a significant role in the learning process,
different choices were examined to optimize its effectiveness. An impor-
tant enhancement was to change the role of the misclassified instances
in the source domain. Instead of directly considering these as useless,
coming from a different distribution to the target, some source instances
could have been misclassified because they are hard or challenging but
useful instances. Additionally, this assumes that individuals in the source
should be carefully selected based on their temporal similarity to the tar-
get [148]. After exploring different updating strategies, we showed the
necessity of initially increasing for a small number of iterations and then
decreasing the weights of the misclassified source data. Moreover, great
emphasis was placed on the optimal number of similar individuals in
the source that could enhance the performance. To examine this, vari-
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ous experiments were conducted on different numbers but also sources
derived from clustering. The clustering-based source selection showed
promising results, suggesting that using structurally similar sources can
further enhance individual performance, with a maximum percentage of
improvement of 5.1% in F1 score and 10.7% in AUC score.

By balancing group-level and personalized approaches, both the Knowl-
edge Distillation method and transfer learning strategies demonstrated
improvements in predictive accuracy across psychopathology-related
tasks. The utilization of clustering-based additional individuals further
emphasized the importance of selecting similar individuals to enhance
model performance. Thus, combining nomothetic and idiographic in-
formation can offer a more accurate framework for the personalized
modeling of psychopathology.

RQ4

What individual characteristics extracted from time-series can be
used to effectively group individuals into homogeneous clusters?

Inspired by the success of nomothetic approaches, it was obvious that
additional information from other individuals could complement and en-
hance the personalized model. However, large heterogeneity in the
whole population necessitated the refinement of the individuals’ sub-
set by only utilizing meaningful clusters or groups of similar individu-
als in the modeling process. Therefore, a significant part of this work
covered the exploration of two different categories of clustering meth-
ods adopted for EMA data. The first category of time-series clustering
was investigated in Chapter 4. Considering that all well-known cluster-
ing algorithms, like k-means or hierarchical clustering, can be used for
time-series, challenges relate to the selection of all clustering-related
predefined parameters (e.g., number of clusters), the appropriate dis-
tance metric, and how to evaluate the validity of the clustering solution.
Due to the unsupervised nature of the problem, to evaluate their valid-
ity we conducted a large-scale EMA simulation study. The simulations
cover different scenarios that mimic real-world cases, involving multi-
ple individuals, noisy features and/or irregular time-series data. Through
thorough experimentation, we showed that all methods achieved a good
performance when applied to datasets with few or no noisy features.
However, for datasets containing a high percentage of noisy features,
as exhibited in real-world EMA data, employing more sophisticated data
representations, such as kernel transformations, has great potential to
better capture its unique characteristics and underlying patterns. A ker-
nel transformation, such as the Global Alignment Kernel (GAK), allows for
mapping the data into a higher-dimensional space, where complex, non-
linear relationships become more distinguishable, making it a promising
first step when cluster-analyzing EMA data. Even in such cases, because
of their structure complexity, the evaluation scores are not realistically
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expected to be as good as in simulation studies. Thus, we should evalu-
ate the scores in comparison to the produced values of other methods.

Beyond relying on time-series data, clustering can be investigated us-
ing alternative sources of information. According to model-based clus-
tering approaches, each individual can be described by different char-
acteristics or parameters extracted from their personalized model. In
Chapter 5, we examined static characteristics, such as coefficients or
feature importance, as well as more dynamically optimized information,
like predictive performance. Through a series of experiments, all these
approaches were assessed along with other important clustering-related
choices, such as the number of clusters and the base model used. As a
result, the superiority of clusters relying on dynamically optimized per-
formance is confirmed by both the Silhouette coefficients and overall
forecasting performance produced by group models.

Regarding the majority of real-world EMA datasets, it is important to
acknowledge that there is no definitive answer about the true or opti-
mal number and composition of groups. Each method, according to its
objective function and parameters, aims to separate data in the most
appropriate way. As a result, different methods may yield varying group
separations, reflecting a distinct perspective on how the data can be best
organized.

RQ5

How can we evaluate the time-series clustering results derived
from different unsupervised clustering algorithms?

Having acknowledged that clustering can effectively enhance the mod-
eling process, it becomes crucial to extract meaningful groups of individ-
uals. However, given that clustering is an unsupervised task, evaluating
its results poses significant challenges. To address this, besides only
checking clusters quality and stability, we proposed two additional ap-
proaches. First, in Chapter 5, we evaluated the effectiveness of the clus-
tering results by examining their performance in downstream predictive
tasks. This approach allowed us to determine whether the clusters were
not only well-formed but also practically useful for improving predictive
accuracy. Specifically, we used the clusters to build group models and
tested their ability to predict future outcomes, providing a comprehen-
sive assessment of their utility. After comparing the performance of ex-
periments, involving different k values and different clustering methods,
we observed that cluster-based models consistently achieved lower loss
scores, indicating more meaningful and effective clustering results. This
approach demonstrates significant potential, as it not only outperformed
personalized and using-all-data models but also provided straightforward
insights into the practical applicability and predictive power of the clus-
ters in real-world scenarios.

Following the predictive performance evaluation, we shifted our focus
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to the explainability of the clusters. Clustering explainability ensures that
the group patterns identified through clustering are comprehensible, ex-
plainable, and valid within the context of mental disorders. However,
due to the inherent challenges of handling EMA data and limited avail-
able published work on clustering explainability, we got inspiration from
literature focusing on interpretable classification models for explaining
an output, which in our setting are the distinct cluster labels. A key ad-
vantage of this method is its versatility. It can be broadly applied to any
set of cluster groupings used as output labels, regardless of the clus-
tering method employed, allowing for the comparison and evaluation of
clustering algorithms based on the quality and relevance of the insights
they produce.

Specifically, in Chapter 6, we proposed an advanced interpretative
deep-learning model, utilizing attention-based mechanisms, that could
internally handle the complexities inherent in MTS data. Such deep-
learning models can rely on the actual data dynamics rather than other
data transformations to provide a clearer and more accurate compre-
hension of examined MTS. Among different experiments regarding its
design, integrating both temporal and feature-level attention provided
the best classification performance, potentially leading to a more accu-
rate description of the model and, consequently, improved cluster in-
terpretation. The power of employing two-level attention gave us the
opportunity to identify the important time-points and variables that play
primary roles in distinguishing between clusters.

Following this exploration, we focused on analyzing, summarizing, and
interpreting the attention weights as well as evaluating the patterns un-
derlying the important segments of the data that differentiate across
clusters. Nevertheless, it is reasonable that the interpretability of the
derived patterns is heavily influenced by the quality of the clustering re-
sults utilized in the framework. As observed, a sub-optimal clustering can
be reflected when similarities in the influential data patterns of different
clusters are extracted, suggesting a smaller number of clusters.

Besides this, explanations should always be assessed by domain ex-
perts on a case-by-case basis. Alternatively, explanations need to be
investigated using some different types of ground truth or baseline infor-
mation. This could include baseline data (such as demographic details
or health-related information) collected before or during the study.

8.1.1. SUMMARY OF CONCLUSIONS
This dissertation explored various approaches aiming at building more
robust and reliable machine learning models, focusing on improving both
predictive accuracy and interpretability. The research was guided by key
questions aimed at addressing the trade-off between personalized and
generalizable models, the utilization of clustering techniques, and the
role of transfer learning in enhancing predictions.

First, the investigation of non-linear individual models highlighted the
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need for more flexible mechanisms capable of capturing the complex in-
teractions underlying psychopathology. Experiments demonstrated that
non-linear models outperformed the linear baseline models for predict-
ing the short-term future of psychopathology-related variables, suggest-
ing their potential to uncover more reliable data patterns reflective of
psychopathological processes. However, the broad variation in perfor-
mance across individuals showed that the EMA data quality and quan-
tity of each individual played an important role. Despite the observed
individual heterogeneity, it has been established that there are com-
monalities shared between different individuals. Therefore, nomothetic
approaches, proposing aggregating data from all individuals, showed en-
hanced performance compared to personalized models.

Next, clustering techniques were employed to group individuals based
on shared patterns. These clustering-based models not only outper-
formed both personalized and aggregated models but also offered practi-
cal insights into the underlying structure of the data. Clusters were found
to capture meaningful patterns that improved the overall predictive ac-
curacy, particularly when the number of clusters and clustering methods
were carefully evaluated and optimized for the data.

The exploration of both idiographic and nomothetic models revealed
that combining both approaches could provide a way to balance individual-
specific predictions with generalizable insights. Methods based on
Knowledge Distillation and transfer learning, adapted for multivariate
time-series data, showed consistent improvement in the 1-lag predictive
performance of all psychopathology-related variables. To summarize, all
explored methodologies converged on a common principle: integrating
group-level data with personalized insights enhances model robustness
and predictive accuracy.

8.2. FUTURE DIRECTIONS
With the goal of gaining a deeper understanding of psychopathology and
individual EMA patterns, this dissertation focuses on two main method-
ological shifts, setting the foundations for exploring complex non-linear
models as well as more advanced group-based modeling strategies. The
research findings demonstrate that these approaches significantly con-
tributed to achieving the set objectives, while also highlighting potential
new directions for future investigation. Specifically, this section presents
a set of some potential directions:

• Clustering based on similarities in EMA subsequences
(shorter segments) of individuals’ time-series.

In Chapter 4, a thorough exploration was conducted on clustering
methods based on raw time-series data, mainly relying on global
similarities across the entire temporal multivariate sequence. How-
ever, one of the key characteristics of EMA data is its dynamic na-
ture with individuals exhibiting multiple patterns that evolve over
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time. Therefore, relying on global similarities may overlook impor-
tant, short-term patterns that are crucial for understanding individ-
ual variability and underlying psychopathological processes. Sub-
sequences refer to shorter segments of an individual’s time-series
data that capture specific patterns over limited intervals of time.
These segments can be extracted from the entire time-series se-
quence to identify recurring or meaningful local behaviors that may
not be apparent when analyzing the entire sequence.

As a future direction, it would be valuable to shift the focus toward
clustering based on similarities in subsequences [209]. Subsequence-
based clustering focuses on capturing specific temporal windows
during which individuals exhibit common patterns or trends, called
time-series subsequences, offering deeper insights into individual
trajectories and shared behaviors. This approach enables us to iden-
tify patterns that are otherwise hidden when analyzing the entire
time-series. Moreover, by breaking down each individual’s time-
series data, we could uncover a set of fine-grained patterns, called
motifs, which are frequently occurring and distinct patterns [210].
These motifs represent important segments that distinguish mean-
ingful patterns from noise. Identifying motifs within subsequences
provides a clearer understanding of the underlying dynamics in
psychopathology.

Furthermore, based on subsequences, another direction would in-
volve incremental or dynamic clustering, where individuals are al-
lowed to change clusters over time as their patterns change [211].
Incremental clustering would allow models to adapt dynamically,
repeatedly assigning individuals to clusters as more subsequences
are revealed. Such clustering could be considered as a form of fuzzy
clustering, as an individual may belong to multiple clusters at differ-
ent time-points of the whole period. By reflecting real-world scenar-
ios in mental disorders, such as comorbidities, this method would
provide a more realistic and accurate grouping of individuals over
time.

• Additional data from sensors and digital phenotyping data.

Another promising direction is the utilization of additional data to
EMA, which can be passively collected from smartphone’s sensors
during an EMA study [212]. These data include sensors’ informa-
tion from individual’s geolocation (Global Positioning System, GPS),
physical activity, sleep patterns, or other biometric information, as
well as digital phenotyping data, time spent online, usage of spe-
cific applications, and response times to messages, etc [36]. Since
such data are measured automatically, they can be collected in
a much higher frequency. Therefore, they represent a rich addi-
tional dataset of objective measurements that can potentially pro-
vide valuable additional insights into individual aspects that may
not be fully captured through self-reported EMA data.
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By, subsequently, integrating these data into modeling approaches,
we can build more accurate models that offer a richer understand-
ing of individual variability and psychopathology [213]. However,
further modeling challenges arise particularly due to the varying
sampling frequencies among different sources of passive data, as
well as compared to self-reported EMA data, which requires an ad-
vanced way for integration.

• Causal ML for facilitating interventions and treatment.

To align with the final goal of the NSMD project, which is to facili-
tate individual intervention and treatment in a healthcare setting,
another promising future direction is the application of causal ML
techniques on EMA data [36]. Unlike traditional ML, which is mostly
used in this dissertation, simply learning associations between dif-
ferent variables, causal ML aims to uncover the underlying causal
mechanisms driving mental health outcomes [214]. For example,
after having identified the most important variables of a model,
causal ML can examine how these can influence changes in other
variables. Such causal discoveries could be utilized in how a system
would respond to an intervention. Thus, causality would ultimately
allow for more targeted interventions. Moreover, causal ML can be
used to predict the potential outcome in response to different treat-
ments. Specifically, it could predict the risk of relapse under differ-
ent treatment plans, guiding medical practitioners in selecting the
most effective, personalized treatment strategy for each individual
[215, 216].

8.3. CONCLUDING REflECTION
In this dissertation, several advanced machine-learning modeling ap-
proaches were explored to address the complexities of EMA data in the
field of psychopathology. Starting from individual non-linear models, it
became evident that integrating data from other individuals could en-
hance the predictive power, reliability and robustness of the predictive
models, particularly in targeting 1-lag future values. Specifically, by bal-
ancing idiographic and nomothetic methods, using transfer learning and
clustering approaches, this work demonstrated how shared patterns and
insights could improve individual predictions and, subsequently our un-
derstanding of individual and generalized group characteristics in mental
disorders.

As we move forward, refining these methodologies along with incorpo-
rating emerging data sources, such as passive and sensor data, holds
the potential to further improve both the accuracy and interpretability
of predictive models. These advancements have real-world implications.
By continuing to explore innovative methodologies, we can contribute
to more personalized, scalable, and effective solutions in mental health
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care. Such advancements contribute to more personalized and effec-
tive treatments and interventions for mental health disorders, but they
can also help clinicians better understand individual variability and the
underlying patterns of mental disorders. Ultimately, this work sets the
stage for further advancements in data-driven psychopathology model-
ing, providing a foundation for future research to build upon.





BIBLIOGRAPHY
[1] M. W. DeVries. The experience of psychopathology: Investigating

mental disorders in their natural settings. Cambridge University
Press, 1992.

[2] E. I. Fried, C. D. van Borkulo, A. n. O. Cramer, L. Boschloo, R. A.
Schoevers, and D. Borsboom. “Mental disorders as networks of
problems: A review of recent insights”. In: Social psychiatry and
psychiatric epidemiology 52 (2017), pp. 1–10.

[3] D. Borsboom, A. O. Cramer, V. D. Schmittmann, S. Epskamp, and
L. J. Waldorp. “The small world of psychopathology”. In: PloS One
6.11 (2011), e27407.

[4] W. W. Eaton, S. S. Martins, G. Nestadt, O. J. Bienvenu, D. Clarke,
and P. Alexandre. “The burden of mental disorders”. In: Epidemi-
ologic Reviews 30.1 (2008), pp. 1–14.

[5] R. F. Krueger. “The structure of common mental disorders”. In:
Archives of General Psychiatry 56.10 (1999), pp. 921–926.

[6] Z. Steel, C. Marnane, C. Iranpour, T. Chey, J. W. Jackson, V. Pa-
tel, and D. Silove. “The global prevalence of common mental dis-
orders: A systematic review and meta-analysis 1980–2013”. In:
International Journal of Epidemiology 43.2 (2014), pp. 476–493.

[7] D. Borsboom, A. O. Cramer, and A. Kalis. “Brain disorders? Not
really: Why network structures block reductionism in psychopa-
thology research”. In: Behavioral and Brain Sciences 42 (2019),
e2.

[8] D. Borsboom. “A network theory of mental disorders”. In: World
Psychiatry 16.1 (2017), pp. 5–13.

[9] K. S. Kendler, P. Zachar, and C. Craver. “What kinds of things are
psychiatric disorders?” In: Psychological medicine 41.6 (2011),
pp. 1143–1150.

[10] W. W. M. H. S. Consortium et al. “Prevalence, severity, and unmet
need for treatment of mental disorders in the World Health Orga-
nization World Mental Health Surveys”. In: Jama 291.21 (2004),
pp. 2581–2590.

[11] R. V. Bijl, R. de Graaf, E. Hiripi, R. C. Kessler, R. Kohn, D. R. Of-
ford, T. B. Ustun, B. Vicente, W. A. Vollebergh, E. E. Walters, et al.
“The prevalence of treated and untreated mental disorders in five
countries”. In: Health Affairs 22.3 (2003), pp. 122–133.

173



8

174 Bibliography

[12] N. Carragher, R. F. Krueger, N. R. Eaton, and T. Slade. “Disor-
ders without borders: current and future directions in the meta-
structure of mental disorders”. In: Social Psychiatry and Psychi-
atric Epidemiology 50 (2015), pp. 339–350.

[13] A. Fagiolini, A. Goracci, et al. “The effects of undertreated chronic
medical illnesses in patients with severe mental disorders.” In:
Journal of Clinical Psychiatry 70.suppl 3 (2009), pp. 22–29.

[14] R. Kohn, S. Saxena, I. Levav, and B. Saraceno. “The treatment gap
in mental health care”. In: Bulletin of the World Health Organiza-
tion 82.11 (2004), pp. 858–866.

[15] L. H. Andrade, J. Alonso, Z. Mneimneh, J. Wells, A. Al-Hamzawi, G.
Borges, E. Bromet, R. Bruffaerts, G. De Girolamo, R. De Graaf, et
al. “Barriers to mental health treatment: results from the WHO
World Mental Health surveys”. In: Psychological Medicine 44.6
(2014), pp. 1303–1317.

[16] M. Solmi, S. Cortese, G. Vita, M. De Prisco, J. Radua, E. Dragioti,
O. Köhler-Forsberg, N. M. Madsen, C. Rohde, L. Eudave, et al. “An
umbrella review of candidate predictors of response, remission,
recovery, and relapse across mental disorders”. In: Molecular Psy-
chiatry 28.9 (2023), pp. 3671–3687.

[17] L. F. Bringmann and M. I. Eronen. “Don’t blame the model: Recon-
sidering the network approach to psychopathology.” In: Psycho-
logical Review 125.4 (2018), p. 606.

[18] M. E. Aristodemou, R. A. Kievit, A. L. Murray, M. Eisner, D. Ribeaud,
and E. I. Fried. “Common cause versus dynamic mutualism: An
empirical comparison of two theories of psychopathology in two
large longitudinal cohorts”. In: Clinical Psychological Science 12.3
(2024), pp. 380–402.

[19] A. Bystritsky, A. Nierenberg, J. Feusner, and M. Rabinovich. “Com-
putational non-linear dynamical psychiatry: A new methodologi-
cal paradigm for diagnosis and course of illness”. In: Journal of
Psychiatric Research 46.4 (2012), pp. 428–435.

[20] R. R. Sokal. “Classification: Purposes, Principles, Progress, Prospects:
Clustering and other new techniques have changed classificatory
principles and practice in many sciences.” In: Science 185.4157
(1974), pp. 1115–1123.

[21] D. American Psychiatric Association, D. American Psychiatric As-
sociation, et al. Diagnostic and Statistical Manual of Mental Disor-
ders: DSM-5. Vol. 5. 5. American Psychiatric Association Washing-
ton, DC, 2013.

[22] D. A. Regier, E. A. Kuhl, and D. J. Kupfer. “The DSM-5: Classifi-
cation and criteria changes”. In: World Psychiatry 12.2 (2013),
pp. 92–98.



Bibliography

8

175

[23] A. Caspi and T. E. Moffitt. “All for one and one for all: Mental disor-
ders in one dimension”. In: American Journal of Psychiatry 175.9
(2018), pp. 831–844.

[24] A. O. Cramer, L. J. Waldorp, H. L. Van Der Maas, and D. Borsboom.
“Comorbidity: A network perspective”. In: Behavioral and Brain
Sciences 33.2-3 (2010), pp. 137–150.

[25] J. J. Newson, V. Pastukh, and T. C. Thiagarajan. “Poor separation of
clinical symptom profiles by DSM-5 disorder criteria”. In: Frontiers
in Psychiatry 12 (2021), p. 775762.

[26] D. Borsboom and A. O. Cramer. “Network analysis: An integrative
approach to the structure of psychopathology”. In: Annual Review
of Clinical Psychology 9 (2013), pp. 91–121.

[27] P. J. Jones, A. Heeren, and R. J. McNally. “Commentary: A network
theory of mental disorders”. In: Frontiers in Psychology 8 (2017),
p. 1305.

[28] D. Borsboom. “Psychometric perspectives on diagnostic sys-
tems”. In: Journal of Clinical Psychology 64.9 (2008), pp. 1089–
1108.

[29] K. Börner, S. Sanyal, A. Vespignani, et al. “Network science”.
In: Annual Review of Information Science and Technology 41.1
(2007), pp. 537–607.

[30] S. Milgram. “The small world problem”. In: Psychology Today 2.1
(1967), pp. 60–67.

[31] D. J. Watts and S. H. Strogatz. “Collective dynamics of ‘small-
world’networks”. In: Nature 393.6684 (1998), pp. 440–442.

[32] L. F. Bringmann, T. Elmer, S. Epskamp, R. W. Krause, D. Schoch,
M. Wichers, J. T. Wigman, and E. Snippe. “What do centrality mea-
sures measure in psychological networks?” In: Journal of Abnor-
mal Psychology 128.8 (2019), p. 892.

[33] D. J. Robinaugh, R. H. Hoekstra, E. R. Toner, and D. Borsboom.
“The network approach to psychopathology: A Review of the liter-
ature 2008–2018 and an agenda for future research”. In: Psycho-
logical Medicine 50.3 (2020), p. 353.

[34] R. C. Kessler, W. T. Chiu, O. Demler, and E. E. Walters. “Prevalence,
severity, and comorbidity of 12-month DSM-IV disorders in the
National Comorbidity Survey Replication”. In: Archives of General
Psychiatry 62.6 (2005), pp. 617–627.

[35] J. Wigman, J. Van Os, D. Borsboom, K. Wardenaar, S. Epskamp, A.
Klippel, W. Viechtbauer, M. Wichers, et al. “Exploring the under-
lying structure of mental disorders: cross-diagnostic differences
and similarities from a network perspective using both a top-
down and a bottom-up approach”. In: Psychological Medicine
45.11 (2015), pp. 2375–2387.



8

176 Bibliography

[36] A. Roefs, E. I. Fried, M. Kindt, C. Martijn, B. Elzinga, A. W. Ev-
ers, R. W. Wiers, D. Borsboom, and A. Jansen. “A new science of
mental disorders: Using personalised, transdiagnostic, dynamical
systems to understand, model, diagnose and treat psychopathol-
ogy”. In: Behaviour Research and Therapy 153 (2022), p. 104096.

[37] D. Borsboom, M. K. Deserno, M. Rhemtulla, S. Epskamp, E. I. Fried,
R. J. McNally, D. J. Robinaugh, M. Perugini, J. Dalege, G. Costan-
tini, et al. “Network analysis of multivariate data in psychological
science”. In: Nature Reviews Methods Primers 1.1 (2021), p. 58.

[38] A. Goldenberg, A. X. Zheng, S. E. Fienberg, E. M. Airoldi, et al.
“A survey of statistical network models”. In: Foundations and
Trends® in Machine Learning 2.2 (2010), pp. 129–233.

[39] D. J. Robinaugh, N. J. LeBlanc, H. A. Vuletich, and R. J. McNally.
“Network analysis of persistent complex bereavement disorder in
conjugally bereaved adults.” In: Journal of Abnormal Psychology
123.3 (2014), p. 510.

[40] S. Guloksuz, L. Pries, and J. Van Os. “Application of network meth-
ods for understanding mental disorders: pitfalls and promise”. In:
Psychological Medicine 47.16 (2017), pp. 2743–2752.

[41] S. Epskamp and E. I. Fried. “A tutorial on regularized partial corre-
lation networks.” In: Psychological Methods 23.4 (2018), p. 617.

[42] L. von Klipstein, D. Borsboom, and A. Arntz. “The exploratory
value of cross-sectional partial correlation networks: Predicting
relationships between change trajectories in borderline personal-
ity disorder”. In: PloS One 16.7 (2021), e0254496.

[43] E. I. Fried, S. Epskamp, R. M. Nesse, F. Tuerlinckx, and D. Bors-
boom. “What are ’good’ depression symptoms? Comparing the
centrality of DSM and non-DSM symptoms of depression in a
network analysis”. In: Journal of Affective Disorders 189 (2016),
pp. 314–320.

[44] C. G. DeYoung and R. F. Krueger. “Understanding psychopathol-
ogy: Cybernetics and psychology on the boundary between order
and chaos”. In: Psychological Inquiry 29.3 (2018), pp. 165–174.

[45] E. I. Fried and A. O. Cramer. “Moving forward: Challenges and
directions for psychopathological network theory and method-
ology”. In: Perspectives on Psychological Science 12.6 (2017),
pp. 999–1020.

[46] S. Epskamp, C. D. van Borkulo, D. C. van der Veen, M. N. Servaas,
A.-M. Isvoranu, H. Riese, and A. O. Cramer. “Personalized network
modeling in psychopathology: The importance of contemporane-
ous and temporal connections”. In: Clinical Psychological Science
6.3 (2018), pp. 416–427.



Bibliography

8

177

[47] C. R. Brewin, B. Andrews, and I. H. Gotlib. “Psychopathology and
early experience: A reappraisal of retrospective reports.” In: Psy-
chological Bulletin 113.1 (1993), p. 82.

[48] T. E. Moffitt, A. Caspi, A. Taylor, J. Kokaua, B. J. Milne, G. Polanczyk,
and R. Poulton. “How common are common mental disorders? Ev-
idence that lifetime prevalence rates are doubled by prospective
versus retrospective ascertainment”. In: Psychological Medicine
40.6 (2010), pp. 899–909.

[49] M. Mestdagh and E. Dejonckheere. “Ambulatory assessment in
psychopathology research: Current achievements and future am-
bitions”. In: Current Opinion in Psychology 41 (2021), pp. 1–8.

[50] J. Ruwaard, L. Kooistra, and M. Thong. “Ecological Momentary
Assessment in Mental Health Research: A Practical Introduction,
With Examples in R (–build 2018-11-26)”. In: Amsterdam: APH
Mental Health (2018).

[51] S. Shiffman, A. A. Stone, and M. R. Hufford. “Ecological momen-
tary assessment”. In: Annual Review of Clinical Psychology 4
(2008), pp. 1–32.

[52] R. Larson, M. Csikszentmihalyi, et al. “The experience sampling
method”. In: New Directions for Methodology of Social and Be-
havioral Science 15.15 (1983), pp. 41–56.

[53] T. J. Trull and U. W. Ebner-Priemer. “Using experience sampling
methods/ecological momentary assessment (ESM/EMA) in clini-
cal assessment and clinical research: introduction to the special
section.” In: (2009).

[54] N. Bolger and J.-P. Laurenceau. Intensive longitudinal methods: An
introduction to diary and experience sampling research. Guilford
press, 2013.

[55] R. C. Moore, C. A. Depp, J. L. Wetherell, and E. J. Lenze. “Eco-
logical momentary assessment versus standard assessment in-
struments for measuring mindfulness, depressed mood, and anx-
iety among older adults”. In: Journal of Psychiatric Research 75
(2016), pp. 116–123.

[56] M. Wichers, C. Simons, I. Kramer, J. A. Hartmann, C. Lothmann,
I. Myin-Germeys, A. Van Bemmel, F. Peeters, P. Delespaul, and
J. Van Os. “Momentary assessment technology as a tool to help
patients with depression help themselves”. In: Acta Psychiatrica
Scandinavica 124.4 (2011), pp. 262–272.

[57] B. Wild, M. Eichler, H.-C. Friederich, M. Hartmann, S. Zipfel, and W.
Herzog. “A graphical vector autoregressive modelling approach to
the analysis of electronic diary data”. In: BMC Medical Research
Methodology 10 (2010), pp. 1–13.



8

178 Bibliography

[58] F. Schultze-Lutter, S. J. Schmidt, and A. Theodoridou. “Psychopa-
thology—a precision tool in need of re-sharpening”. In: Frontiers
in Psychiatry 9 (2018), p. 446.

[59] P. Dolce, D. Marocco, M. N. Maldonato, and R. Sperandeo. “Toward
a machine learning predictive-oriented approach to complement
explanatory modeling. an application for evaluating psychopatho-
logical traits based on affective neurosciences and phenomenol-
ogy”. In: Frontiers in Psychology 11 (2020), p. 446.

[60] D. Stamate, A. Katrinecz, D. Stahl, S. J. Verhagen, P. A. Delespaul,
J. van Os, and S. Guloksuz. “Identifying psychosis spectrum dis-
order from experience sampling data using machine learning ap-
proaches”. In: Schizophrenia research 209 (2019), pp. 156–163.

[61] A. B. Shatte, D. M. Hutchinson, and S. J. Teague. “Machine learning
in mental health: A scoping review of methods and applications”.
In: Psychological Medicine 49.9 (2019), pp. 1426–1448.

[62] T. Yarkoni and J. Westfall. “Choosing prediction over explanation
in psychology: Lessons from machine learning”. In: Perspectives
on Psychological Science 12.6 (2017), pp. 1100–1122.

[63] K. Husen, E. Rafaeli, J. Rubel, E. Bar-Kalifa, and W. Lutz. “Daily af-
fect dynamics predict early response in CBT: Feasibility and pre-
dictive validity of EMA for outpatient psychotherapy”. In: Journal
of Affective Disorders 206 (2016), pp. 305–314.

[64] R. Wang, W. Wang, M. S. Aung, D. Ben-Zeev, R. Brian, A. T. Camp-
bell, T. Choudhury, M. Hauser, J. Kane, E. A. Scherer, et al. “Pre-
dicting symptom trajectories of schizophrenia using mobile sens-
ing”. In: Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies 1.3 (2017), pp. 1–24.

[65] S. L. Connolly and L. B. Alloy. “Rumination interacts with life stress
to predict depressive symptoms: An ecological momentary as-
sessment study”. In: Behaviour Research and Therapy 97 (2017),
pp. 86–95.

[66] J. Torous, M. E. Larsen, C. Depp, T. D. Cosco, I. Barnett, M. K. Nock,
and J. Firth. “Smartphones, sensors, and machine learning to ad-
vance real-time prediction and interventions for suicide preven-
tion: A review of current progress and next steps”. In: Current
Psychiatry Reports 20.7 (2018), pp. 1–6.

[67] A. G. Wright and W. C. Woods. “Personalized models of psycho-
pathology”. In: Annual Review of Clinical Psychology 16 (2020),
pp. 49–74.

[68] N. R. Eaton, L. F. Bringmann, T. Elmer, E. I. Fried, M. K. Forbes,
A. L. Greene, R. F. Krueger, R. Kotov, P. D. McGorry, C. Mei, et al.
“A review of approaches and models in psychopathology concep-
tualization research”. In: Nature Reviews Psychology 2.10 (2023),
pp. 622–636.



Bibliography

8

179

[69] C. R. van Genugten, J. Schuurmans, F. Lamers, H. Riese, B. W.
Penninx, R. A. Schoevers, H. M. Riper, and J. H. Smit. “Experi-
enced burden of and adherence to smartphone-based ecological
momentary assessment in persons with affective disorders”. In:
Journal of Clinical Medicine 9.2 (2020), p. 322.

[70] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G.
Bing. “Learning from class-imbalanced data: Review of methods
and applications”. In: Expert Systems with Applications 73 (2017),
pp. 220–239.

[71] J. Wenzel, N. Dreschke, E. Hanssen, M. Rosen, A. Ilankovic, J. Kam-
beitz, A.-K. Fett, and L. Kambeitz-Ilankovic. “Ecological momen-
tary assessment (EMA) combined with unsupervised machine
learning shows sensitivity to identify individuals in potential need
for psychiatric assessment”. In: European Archives of Psychiatry
and Clinical Neuroscience 274.7 (2024), pp. 1639–1649.

[72] R. P. Masini, M. C. Medeiros, and E. F. Mendes. “Machine learn-
ing advances for time series forecasting”. In: Journal of Economic
Surveys 37.1 (2023), pp. 76–111.

[73] S. Al-Stouhi and C. K. Reddy. “Transfer learning for class imbal-
ance problems with inadequate data”. In: Knowledge and Infor-
mation Systems 48 (2016), pp. 201–228.

[74] G. Hinton, O. Vinyals, and J. Dean. “Distilling the knowledge in a
neural network”. In: arXiv preprint arXiv:1503.02531 (2015).

[75] D. O. Hoare, D. S. Matteson, and M. T. Wells. “K-ARMA Models for
Clustering Time Series Data”. In: arXiv preprint arXiv:2207.00039
(2022).

[76] I. Myin-Germeys, Z. Kasanova, T. Vaessen, H. Vachon, O. Kirt-
ley, W. Viechtbauer, and U. Reininghaus. “Experience sampling
methodology in mental health research: new insights and tech-
nical developments”. In: World Psychiatry 17.2 (2018), pp. 123–
132.

[77] T. Kuhlmann, M. Dantlgraber, and U.-D. Reips. “Investigating mea-
surement equivalence of visual analogue scales and Likert-type
scales in Internet-based personality questionnaires”. In: Behavior
Research Methods 49 (2017), pp. 2173–2181.

[78] M. W. Heymans and J. W. Twisk. “Handling missing data in clin-
ical research”. In: Journal of Clinical Epidemiology 151 (2022),
pp. 185–188.

[79] T. Emmanuel, T. Maupong, D. Mpoeleng, T. Semong, B. Mphago,
and O. Tabona. “A survey on missing data in machine learning”.
In: Journal of Big Data 8 (2021), pp. 1–37.



8

180 Bibliography

[80] S. Fielding, P. M. Fayers, A. McDonald, G. McPherson, M. K. Camp-
bell, and R. S. Group. “Simple imputation methods were inade-
quate for missing not at random (MNAR) quality of life data”. In:
Health and Quality of Life Outcomes 6 (2008), pp. 1–9.

[81] K. Ø. Mikalsen, F. M. Bianchi, C. Soguero-Ruiz, and R. Jenssen.
“Time series cluster kernel for learning similarities between mul-
tivariate time series with missing data”. In: Pattern Recognition
76 (2018), pp. 569–581.

[82] V. I. Paulsen and M. Raghupathi. An introduction to the theory of
reproducing kernel Hilbert spaces. Vol. 152. Cambridge university
press, 2016.

[83] J. M. Haslbeck, A. Jover-Martínez, A. J. Roefs, E. I. Fried, L. H. Lem-
mens, E. Groot, and P. A. Edelsbrunner. “Comparing Likert and
Visual Analogue Scales in Ecological Momentary Assessment”. In:
(2024).

[84] L. Li and B. A. Prakash. “Time series clustering: Complex is sim-
pler!” In: Proceedings of the 28th International Conference on Ma-
chine Learning (ICML-11). 2011, pp. 185–192.

[85] M. Cuturi. “Fast global alignment kernels”. In: Proceedings of the
28th International Conference on Machine Learning (ICML-11).
2011, pp. 929–936.

[86] L. F. Bringmann, N. Vissers, M. Wichers, N. Geschwind, P. Kuppens,
F. Peeters, D. Borsboom, and F. Tuerlinckx. “A network approach
to psychopathology: new insights into clinical longitudinal data”.
In: PloS One 8.4 (2013), e60188.

[87] S. Epskamp, J. Kruis, and M. Marsman. “Estimating psychopatho-
logical networks: Be careful what you wish for”. In: PloS One 12.6
(2017), e0179891.

[88] J. C. Biesanz. “Autoregressive longitudinal models.” In: (2012),
pp. 459–471.

[89] L. F. Bringmann. “Person-specific networks in psychopathology:
Past, present, and future”. In: Current Opinion in Psychology 41
(2021), pp. 59–64.

[90] L. van der Krieke, A. C. Emerencia, E. H. Bos, J. G. Rosmalen, H.
Riese, M. Aiello, S. Sytema, P. de Jonge, et al. “Ecological momen-
tary assessments and automated time series analysis to promote
tailored health care: A proof-of-principle study”. In: JMIR Research
Protocols 4.3 (2015), e4000.

[91] M. Eichler. “A graphical approach for evaluating effective con-
nectivity in neural systems”. In: Philosophical Transactions of the
Royal Society B: Biological Sciences 360.1457 (2005), pp. 953–
967.



Bibliography

8

181

[92] G. Shukur and P. Mantalos. “A simple investigation of the Granger-
causality test in integrated-cointegrated VAR systems”. In: Jour-
nal of Applied Statistics 27.8 (2000), pp. 1021–1031.

[93] A. Shojaie and E. B. Fox. “Granger causality: A review and recent
advances”. In: Annual Review of Statistics and Its Application 9.1
(2022), pp. 289–319.

[94] F. Dablander and M. Hinne. “Node centrality measures are a poor
substitute for causal inference”. In: Scientific Reports 9.1 (2019),
p. 6846.

[95] K. Bulteel, F. Tuerlinckx, A. Brose, and E. Ceulemans. “Using raw
VAR regression coefficients to build networks can be misleading”.
In: Multivariate Behavioral Research 51.2-3 (2016), pp. 330–344.

[96] S. Epskamp, D. Borsboom, and E. I. Fried. “Estimating psycholog-
ical networks and their accuracy: A tutorial paper”. In: Behavior
Research Methods 50 (2018), pp. 195–212.

[97] S. Epskamp, L. J. Waldorp, R. Mõttus, and D. Borsboom. “The
Gaussian graphical model in cross-sectional and time-series
data”. In: Multivariate Behavioral Research 53.4 (2018), pp. 453–
480.

[98] J. Haslbeck and L. J. Waldorp. “mgm: Estimating time-varying
mixed graphical models in high-dimensional data”. In: arXiv
preprint arXiv:1510.06871 (2015).

[99] J. M. Haslbeck, L. F. Bringmann, and L. J. Waldorp. “A tutorial on
estimating time-varying vector autoregressive models”. In: Multi-
variate behavioral research (2020), pp. 1–30.

[100] T. Krone, C. J. Albers, P. Kuppens, and M. E. Timmerman. “A multi-
variate statistical model for emotion dynamics.” In: Emotion 18.5
(2018), p. 739.

[101] R. Moraffah, M. Karami, R. Guo, A. Raglin, and H. Liu. “Causal in-
terpretability for machine learning-problems, methods and eval-
uation”. In: ACM SIGKDD Explorations Newsletter 22.1 (2020),
pp. 18–33.

[102] T. J. Hastie. “Generalized additive models”. In: Statistical Models
in S. Routledge, 2017, pp. 249–307.

[103] R. Tibshirani and J. Friedman. The elements of statistical learning:
data mining, inference, and prediction. Springer, 2001.

[104] Y. Lou, R. Caruana, and J. Gehrke. “Intelligible models for classifi-
cation and regression”. In: Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing. 2012, pp. 150–158.

[105] Y. Lou, R. Caruana, J. Gehrke, and G. Hooker. “Accurate intelligible
models with pairwise interactions”. In: Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. 2013, pp. 623–631.



8

182 Bibliography

[106] H. Nori, S. Jenkins, P. Koch, and R. Caruana. “Interpretml: A uni-
fied framework for machine learning interpretability”. In: arXiv
preprint arXiv:1909.09223 (2019).

[107] H. Nori, R. Caruana, Z. Bu, J. H. Shen, and J. Kulkarni. “Accuracy,
interpretability, and differential privacy via explainable boosting”.
In: International Conference on Machine Learning. PMLR. 2021,
pp. 8227–8237.

[108] P. D. Soyster, L. Ashlock, and A. J. Fisher. “Pooled and person-
specific machine learning models for predicting future alcohol
consumption, craving, and wanting to drink: A demonstration of
parallel utility.” In: Psychology of Addictive Behaviors (2021).

[109] G. Spanakis, G. Weiss, B. Boh, and A. Roefs. “Network analysis
of ecological momentary assessment data for monitoring and un-
derstanding eating behavior”. In: Smart Health. Springer Interna-
tional Publishing, 2016, pp. 43–54.

[110] A. J. Martínez, L. Lemmens, E. I. Fried, and A. Roefs. “Developing
a Transdiagnostic Ecological Momentary Assessment Protocol for
Psychopathology.” In: (2023).

[111] M. Ntekouli, G. Spanakis, L. Waldorp, and A. Roefs. “Using ex-
plainable boosting machine to compare idiographic and nomoth-
etic approaches for ecological momentary assessment data”. In:
International Symposium on Intelligent Data Analysis. Springer.
2022, pp. 199–211.

[112] A. G. Wright and J. Zimmermann. “Applied ambulatory assess-
ment: Integrating idiographic and nomothetic principles of mea-
surement.” In: Psychological Assessment 31.12 (2019), p. 1467.

[113] L. F. Bringmann, C. Albers, C. Bockting, D. Borsboom, E. Ceule-
mans, A. Cramer, S. Epskamp, M. I. Eronen, E. Hamaker, P.
Kuppens, et al. “Psychopathological networks: Theory, methods
and practice”. In: Behaviour Research and Therapy 149 (2022),
p. 104011.

[114] D. Cicchetti and F. A. Rogosch. “Equifinality and multifinality in
developmental psychopathology”. In: Development and Psycho-
pathology 8.4 (1996), pp. 597–600.

[115] I. H. Sarker. “Machine learning: Algorithms, real-world applica-
tions and research directions”. In: SN Computer Science 2.3
(2021), p. 160.

[116] A. M. Beltz, A. G. Wright, B. N. Sprague, and P. C. Molenaar. “Bridg-
ing the nomothetic and idiographic approaches to the analysis of
clinical data”. In: Assessment 23.4 (2016), pp. 447–458.

[117] J. V. Tu. “Advantages and disadvantages of using artificial neu-
ral networks versus logistic regression for predicting medical
outcomes”. In: Journal of Clinical Epidemiology 49.11 (1996),
pp. 1225–1231.



Bibliography

8

183

[118] J. Gou, B. Yu, S. J. Maybank, and D. Tao. “Knowledge distillation:
A survey”. In: International Journal of Computer Vision 129.6
(2021), pp. 1789–1819.

[119] L. Wang and K.-J. Yoon. “Knowledge distillation and student-
teacher learning for visual intelligence: A review and new out-
looks”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 44.6 (2021), pp. 3048–3068.
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SUMMARY
The overall goal of this dissertation is to develop and evaluate advanced
analysis methods tailored to the network approach for studying psycho-
pathology, which offers a novel perspective on understanding mental
disorders. The network approach to psychopathology conceptualizes
mental disorders as a complex system of interacting psychopathology-
related variables, such as emotions, behaviors and experiences, that
directly influence one another. To study these interactions, this dis-
sertation leverages time-intensive, repeated, intra-individual measure-
ments using Ecological Momentary Assessment (EMA), a method that
has grown significantly in psychology and health research over the past
decade. EMA enables the real-time and contextual monitoring of various
psychopathology-related variables, such as emotions, behaviors and ex-
periences within participants’ natural environment. This method allows
the collection of temporal data regarding all these variables, providing
great insights into their temporal dynamics.

The rich structure and granularity of the EMA data can be particularly
valuable for building robust predictive models capable of forecasting the
course of mental disorders, examining treatment responses, or develop-
ing tailored psychological interventions. Accurate predictive models are
crucial not only for facilitating early interventions, potentially mitigating
the severity of mental health episodes, but also for providing reliable rep-
resentations of the interactions between key variables. These represen-
tations enrich our understanding of the complex mechanisms underlying
mental disorders, offering a pathway to more personalized and effective
therapeutic strategies.

As introduced in Chapter 2, a commonly used method for studying
the network approach to psychopathology is through the Vector Autore-
gressive (VAR) model, which applies a linear framework to capture tem-
poral dependencies and interactions between various psychopathology-
related variables. While VAR has been widely adopted due to its inter-
pretability, its linear nature may fail to fully capture the inherent com-
plexity of mental disorders. Psychopathology-related variables probably
exhibit non-linear interactions, reflecting the dynamic and complex na-
ture of mental health processes. Relying solely on linear models risks
oversimplifying these relationships and missing critical aspects of the
underlying patterns.

Motivated by the constraints of linear models, this dissertation explores
the use of advanced machine learning techniques, with a particular em-
phasis on non-linear models. Such advanced models offer the potential
to recognize more complicated patterns among EMA data, enhancing
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the accuracy of predictions related to the occurrence and intensity of
different variables. While the initial focus is on developing personalized
non-linear models that tailor predictions to individual patterns, this dis-
sertation also investigates the integration of data from other individuals
of the same EMA study to further enhance predictive performance. By
combining these group-level insights with personalized approaches, the
models achieve a balance between capturing individual specificity and
extracting generalizable patterns, thus advancing predictive modeling in
psychopathology.

Given the significant individual heterogeneity, where individuals ex-
hibit unique EMA patterns, Chapter 3 starts with exploring the perfor-
mance of non-linear models based on tree ensembles. In this chapter,
we propose applying the Explainable Boosting Machines (EBMs), which is
a non-linear interpretable model. The experimental evaluation demon-
strated strong consistency in the results of the personalized (or idio-
graphic) approach, with non-linear models significantly improving per-
formance on both synthetic and real-world datasets.

One of the main challenges in building personalized models is the lim-
ited amount of data points available for each individual. These small
datasets often result in models that cannot be trained at all, or in some
cases, overfitted models that lack generalizability. To address this, data
collected from other individuals in the same EMA study can prove ben-
eficial for modeling. In Chapter 3, we also examine nomothetic predic-
tion models, which integrate data from all individuals of the same EMA
study. After a series of experiments, the proposed knowledge distilla-
tion method emerged as the most beneficial method for improving the
performance of personalized models. This was achieved by transferring
knowledge from a larger, more general model to a smaller, more spe-
cialized one, achieving up to a 17% improvement in AUC performance in
one real-world dataset.

While nomothetic approaches with broad data integration offer valu-
able insights into general population trends, the considerable individ-
ual variability within large datasets can sometimes hide the unique indi-
vidual patterns. By grouping individuals with shared characteristics, we
can reduce noise in the data and focus on more specific patterns within
subgroups of the population. To better refine the input data, strategi-
cally selecting meaningful groups of individuals could enhance our un-
derstanding of the underlying processes at both the individual and the
group level. An effective way to achieve this is through clustering. Con-
sequently, Chapters 4 and 5 focus on evaluating the performance of var-
ious clustering approaches for grouping individuals based on the similar-
ity of their raw time-series data patterns and model-based information,
respectively. Since clustering is an unsupervised task, where the true
underlying groups are typically unknown, evaluating the results can be
challenging. Therefore, Chapter 4 investigates various clustering meth-
ods and clustering-related parameters by analyzing data from simula-
tions. The simulations are designed to mimic real-world EMA datasets,
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involving multiple individuals, noisy features and/or irregular time-series
data. The results, based on comparisons across various evaluation mea-
sures, suggest that employing alternative data representations, such as
Global Alignment Kernel (GAK) transformations, has great potential to
better capture the unique characteristics and underlying patterns of EMA
data.

In addition to traditional intrinsic evaluation measures, Chapters 5 and
6 take different approaches to assess the efficacy of clustering methods
and the practical usefulness of the created groups. First, Chapter 5 evalu-
ates clustering within the context of a downstream predictive/forecasting
task, providing a more comprehensive understanding of their practical
utility. The results demonstrated that the superiority of clustering per-
formance is not a random effect arising from using a mixture of models,
but is instead driven by the quality of the clusters themselves. Achieving
lower MSE scores with clustering indicates that using data from simi-
lar individuals helps capture more relevant patterns and make accurate
predictions. Notably, the proposed performance-optimized clustering
approach (POC) achieved a maximum improvement of 7.99% in MSE
scores over the personalized models when using Random Forest. Sec-
ond, Chapter 6 shifts the focus to explainability as an additional criterion
for evaluating clustering. By generating explanations through an inter-
pretable framework as well as analyzing the attention-derived important
time-points and feature interactions at both cluster- and individual-level,
valuable insights into the patterns characterizing each cluster are iden-
tified. These explanations can be particularly useful for clinicians and
researchers, as they provide a clearer understanding of the underlying
mechanisms driving group-specific behaviors, ultimately facilitating the
development of more effective interventions.

After thoroughly validating the clustering results in Chapters 4, 5 and
6, the next step is to explore how information from similar individuals,
even without being derived from clustering, can complement and en-
hance personalized models. Specifically, we propose employing transfer
learning approaches to improve predictions for a specific individual (tar-
get domain) by incorporating data from one or several other individuals
(source domain). In Chapter 7, we focus on methodologically refining all
the modeling aspects of the Transfer Adaptive Boosting (TrAdaBoost) pro-
cess. After a set of experiments investigating the impact of the optimal
selection of similar source domains and the target and source reweight-
ing strategies, the results highlight the presence of difficult and useful
source instances, but reveal that not all source data significantly con-
tribute to target prediction. Furthermore, the incorporation of similar
source domains, optimally individuals of the same cluster as identified
through clustering, also positively impacts overall performance, reaching
a maximum improvement of 10.7% in AUC score compared to personal-
ized AdaBoost.

Finally, Chapter 8 offers a detailed summary of the research con-
ducted in this dissertation, addressing each of the research questions
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posed in Chapter 1 and outlining potential directions for future research.
The findings of this dissertation demonstrate the potential of advanced
non-linear methods in capturing the complex dynamics of psychopathol-
ogy. Moreover, personalized models can be enhanced by incorporating
the data of more individuals through nomothetic and clustering-based
approaches, providing complementary insights, particularly when data
is sparse and limited. To balance these approaches, adapting trans-
fer learning approaches further enhances the predictive performance of
group-based models, highlighting the value of utilizing shared knowledge
across similar individuals. Overall, this dissertation introduces method-
ological advancements for studying mental disorders, paving the way for
deeper insights into the mechanisms underlying psychopathology.



SAMENVATTING
Het doel van dit proefschrift is het ontwikkelen en evalueren van gea-
vanceerde analysemethoden die passen bij de netwerkmethode voor
het bestuderen van psychopathologie. Deze methode biedt een nieuw
perspectief op het begrijpen van psychische stoornissen. De netwerk-
methode conceptualiseert psychische stoornissen als een complex dy-
namisch systeem van interacterende variabelen, , zoals emoties, gedrag
en ervaringen. Om dit dynamische systeem te bestuderen, wordt in
dit proefschrift gebruik gemaakt van, herhaalde intra-individuele metin-
gen via Ecological Momentary Assessment (EMA), een methode die de
afgelopen tien jaar aanzienlijk is gegroeid binnen de psychologie en
gezondheidswetenschappen. EMA houdt in dat proefpersonen via hun
smartphone meerdere keren per dag korte vragenlijstjes invullen, wat
realtime en contextuele monitoring van verschillende psychopathologie-
gerelateerde variabelen, binnen de natuurlijke omgeving van deelne-
mers mogelijk maakt. Deze data bieden inzichten in het dynamisch
verloop van relevante variabelen binnen een proefpersoon.

De rijke structuur van EMA-data kan bijzonder waardevol zijn voor
het ontwikkelen van robuuste voorspellende modellen die in staat zijn
het verloop van psychische stoornissen te voorspellen, behandelreac-
ties te analyseren of op maat gemaakte psychologische interventies
te ontwikkelen. Nauwkeurige voorspellende modellen zijn niet alleen
cruciaal voor het faciliteren van vroege interventies—die mogelijk de
ernst van psychische episoden kunnen verminderen—maar ook voor
het bieden van betrouwbare representaties van de interacties tussen
relevante variabelen. Deze representaties verrijken ons begrip van psy-
chische stoornissen en bieden een pad naar meer gepersonaliseerde en
effectieve therapeutische strategieën.

Zoals geïntroduceerd in Hoofdstuk 2, is het Vector Autoregressive
(VAR) model een veelgebruikte methode die past in de netwerkmethode
van psychopathologie. In een VAR model worden de relaties tussen de
variabelen lineair gemodelleerd om temporele afhankelijkheden en inter-
acties tussen verschillende psychopathologie-gerelateerde variabelen te
beschrijven. Hoewel VAR in dit veld veelvuldig wordt gebruikt, heeft het
lineaire karakter van VAR beperkingen voor de beschrijving van de com-
plexiteit van psychische stoornissen. Psychopathologie-gerelateerde
variabelen vertonen waarschijnlijk niet-lineaire interacties, wat de dy-
namische en complexe aard van psychische processen weerspiegelt.
Een exclusieve focus op lineaire modellen kan deze relaties oversimplifi-
ceren en cruciale aspecten van onderliggende patronen missen.

Gezien de beperkingen van lineaire modellen, onderzoeken we in
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dit proefschrift het gebruik van geavanceerde machine learning tech-
nieken, met een specifieke nadruk op niet-lineaire modellen. Dergelijke
geavanceerde modellen bieden de mogelijkheid om complexere pa-
tronen binnen EMA-data te ontdekken, waardoor de nauwkeurigheid
van voorspellingen met betrekking tot het voorkomen en de inten-
siteit van verschillende variabelen wordt verbeterd. In het eerste deel
van dit proefschrift ligt de focus ligt op het ontwikkelen van geperson-
aliseerde niet-lineaire modellen die voorspellingen baseren op individu-
ele datasets. Daarnaast toetsen we in dit proefschrift ook de integratie
van data van andere individuen uit dezelfde EMA-studie om de voor-
spellende prestaties verder te verbeteren. Door deze groepsinzichten
te combineren met gepersonaliseerde benaderingen, bereiken de mod-
ellen een balans tussen individuele specificiteit en het extraheren van
generaliseerbare patronen, waardoor voorspellend modelleren in de psy-
chopathologie wordt verbeterd.

Gezien de significante interindividuele heterogeniteit, waarbij indi-
viduen unieke EMA-patronen vertonen, begint Hoofdstuk 3 met het on-
derzoeken van de prestaties van niet-lineaire modellen op basis van
boomgebaseerde ensemblemodellen. In dit hoofdstuk toetsen we het
gebruik van Explainable Boosting Machines (EBM), een niet-lineair en
interpreteerbaar model. De evaluatie toonde aan dat de geperson-
aliseerde (of idiografische) methode sterke consistentie in resultaten
vertoonde , waarbij niet-lineaire modellen de prestaties significant ver-
beterden op zowel synthetische datasets, alsook echte datasets.

Een van de grootste uitdagingen bij het bouwen van gepersonaliseerde
modellen is de beperkte hoeveelheid beschikbare gegevens per indi-
vidu. Deze kleine datasets leiden vaak tot modellen die niet getraind
kunnen worden of, in sommige gevallen, te veel op de gegeven dataset
lijken en daardoor hun generaliseerbaarheid verliezen. Om dit probleem
aan te pakken, kan data die is verzameld van andere individuen binnen
dezelfde EMA-studie nuttig zijn voor het modelleren. In Hoofdstuk 3 on-
derzoeken we ook deze zogenoemde nomothetische voorspellingsmod-
ellen, die data van alle individuen uit dezelfde EMA-studie integreren.
Na een reeks experimenten bleek de voorgestelde Knowledge Distilla-
tion method de meest effectieve aanpak voor het verbeteren van de
prestaties van gepersonaliseerde modellen. Dit werd bereikt door ken-
nis over te dragen van een groter, algemener model naar een kleiner,
meer gespecialiseerd model, wat resulteerde in een verbetering tot 17%
in AUC-prestaties met een echte dataset.

Hoewel nomothetische benaderingen met data-integratie waardevolle
inzichten bieden in algemene populatietrends, kan de aanzienlijke in-
dividuele variabiliteit binnen grote datasets soms de unieke individu-
ele patronen verbergen. Door individuen met gedeelde kenmerken te
groeperen, kunnen we ruis in de data verminderen en ons richten op
specifiekere patronen binnen subgroepen van de populatie. Een effec-
tieve manier om dit te bereiken is via clustering. Daarom richten Hoofd-
stukken 4 en 5 zich op het evalueren van de prestaties van verschil-
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lende clusteringmethodes voor het groeperen van individuen op basis
van de gelijkenis van hun ruwe tijdreeksgegevens en modelgebaseerde
informatie. Omdat clustering een niet-gesuperviseerde taak is, waarbij
de ware onderliggende groepen meestal onbekend zijn, kan de evalu-
atie van de resultaten een uitdaging zijn. Daarom onderzoekt Hoofdstuk
4 verschillende clusteringmethoden en clusteringgerelateerde parame-
ters door data uit simulaties te analyseren. De simulaties zijn ontwor-
pen om echte EMA-datasets na te bootsen, met meerdere individuen,
ruisgevoelige kenmerken en/of onregelmatige tijdreeksdata. De resul-
taten suggereren dat het gebruik van alternatieve datarepresentaties,
zoals Global Alignment Kernel (GAK)-transformaties , veelbelovend is
voor het beter nauwkeuriger vastleggen van de unieke kenmerken en
onderliggende patronen van EMA-data.

Naast traditionele evaluatiemethoden worden in Hoofdstukken 5 en
6 verschillende methodes gebruikt om de effectiviteit van clustering-
methoden en de praktische bruikbaarheid van de gecreëerde groepen
te beoordelen. Hoofdstuk 5 evalueert clustering binnen de context van
een voorspellende taak en toont aan dat verbeteringen in clustering niet
willekeurig zijn, maar worden beïnvloed door de kwaliteit van de clusters.
Het prestatie-geoptimaliseerde clusteringmodel (POC) verbeterde de
Mean Squared Error (MSE)-score met maximaal 7.99% ten opzichte van
gepersonaliseerde modellen met Random Forest. Hoofdstuk 6 richt zich
vervolgens op verklaarbaarheid als aanvullend evaluatiecriterium, waar-
bij interpreteerbare verklaringen en aandacht-gebaseerde (attention-
based) inzichten worden gegenereerd om de patronen binnen clusters
te begrijpen.

Na een grondige validatie van de clusteringresultaten in Hoofdstukken
4, 5 en 6, is de volgende stap om te onderzoeken hoe informatie van
vergelijkbare individuen, zelfs wanneer deze niet rechtstreeks voortkomt
uit clustering, gepersonaliseerde modellen kan aanvullen en verbeteren.
Specifiek toetsen we de toepassing van transfer learning-methodes om
de voorspellingen voor een specifiek individu (doeldomein) te verbeteren
door gegevens van één of meerdere andere individuen (brondomein ) te
integreren. In Hoofdstuk 7 richten we ons op de methodologische ver-
fijning van alle modelleeraspecten van het Transfer Adaptive Boosting
(TrAdaBoost)-proces. Na een reeks experimenten waarin de invloed van
de optimale selectie van vergelijkbare brondomeinen en de herweging
van doel- en brondomeinen werd onderzocht, geven de resultaten aan
dat, hoewel er zowel moeilijke als nuttige bronvoorbeelden in de dataset
aanwezig zijn, niet alle brondata significant bijdragen aan de voorspellin-
gen van het doeldomein.. Bovendien heeft de integratie van vergeli-
jkbare brondomeinen—bij voorkeur individuen uit dezelfde cluster—ook
een positieve invloed op de algehele prestaties, met een maximale ver-
betering van 10.7% in AUC-score ten opzichte van gepersonaliseerde
AdaBoost.

Tot slot biedt Hoofdstuk 8 een uitgebreide samenvatting van het onder-
zoek in dit proefschrift, waarin de gestelde onderzoeksvragen uit Hoofd-
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stuk 1 worden beantwoord en mogelijke richtingen voor toekomstig on-
derzoek worden besproken. De bevindingen in dit proefschrift onder-
strepen het potentieel van geavanceerde niet-lineaire modellen om de
complexe dynamiek van psychopathologie beter te begrijpen. Boven-
dien blijkt dat gepersonaliseerde modellen aanzienlijk kunnen worden
verbeterd door gegevens van andere individuen te integreren via nomo-
thetische en clustering-gebaseerde benaderingen. Dit biedt waardevolle
aanvullende inzichten, vooral wanneer de beschikbare gegevens per in-
dividu schaars of beperkt zijn. Door transfer learning toe te passen,
wordt een balans gevonden tussen individuele specificiteit en het benut-
ten van gedeelde kennis, wat leidt tot robuustere en nauwkeurigere voor-
spellende modellen. Samenvattend introduceert dit proefschrift method-
ologische innovaties voor het bestuderen van psychische stoornissen,
waarmee een basis wordt gelegd voor diepgaandere inzichten in de on-
derliggende mechanismen van psychopathologie en de ontwikkeling van
effectievere, op maat gemaakte interventies.



IMPACT PARAGRAPH
The Regulations for obtaining a doctoral degree at Maastricht Univer-
sity require the addition of an impact paragraph to the thesis (Article
12, Paragraph 8, entry into force on 1 February 2023). This paragraph
consists of a reflection on the scientific impact of the results of the re-
search described in the thesis, as well as, if applicable, the social im-
pact anticipated or already achieved. Scientific impact is the short-term
and long-term contribution of the results of scientific research to shifting
insight and stimulating science, method, theory and application within
and between disciplines. Social impact is the short-term and long-term
contribution of the results of scientific research to changes in or devel-
opment of social sectors and to social challenges. This impact paragraph
addresses the four questions provided in the regulations.

Research

What is the main purpose of the research described in the thesis,
and what are the main results and conclusions?

The primary goal of this dissertation is to develop reliable and robust
approaches, applying advanced data-driven models to Ecological Mo-
mentary Assessment (EMA) data, to accurately capture individual psy-
chopathology. Starting from personalized (idiographic) and group-based
(nomothetic) approaches, this research work places significant empha-
sis on balancing these perspectives through more sophisticated group-
based modeling strategies.

Building on the challenges and assumptions of the widely employed
linear models, this research aims to bridge the gap between traditional
linear models and more advanced non-linear models within the network
approach to psychopathology. Specifically, it demonstrates how adopting
non-linear models, such as Explainable Boosting Machines (EBMs), can
be effectively integrated into this framework to uncover complex and
hidden relationships between variables. Non-linear models also provide
a more realistic understanding of mental health processes, enabling their
application in more advanced and sophisticated modeling approaches to
further enhance predictive accuracy and clinical utility.

A key focus throughout this dissertation is on improving the predictive
performance of personalized models, not only to achieve higher accu-
racy, but also to ensure that models can provide reliable and consistent
predictions across various scenarios or predictive tasks. These tasks in-
clude forecasting different psychopathology-related variables, capturing
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dynamic interactions, and explaining the underlying psychopathological
mechanisms at an individual and group level. By addressing these ob-
jectives, the dissertation aims to enhance our understanding of men-
tal health dynamics, support the development of personalized interven-
tions, and contribute to more generalizable methodologies that can be
applied across diverse populations and contexts.

Specifically, this dissertation (Chapter 3) starts with exploring the ap-
plication of non-linear EBM models within both idiographic and nomoth-
etic approaches. Experimental results demonstrate that non-linear mod-
els, including EBMs, outperform linear models in terms of predictive accu-
racy. Moreover, nomothetic modeling approaches based on EBMs show
improved performance, highlighting their potential to more accurately
predict future outcomes.

To further improve nomothetic approaches, this dissertation (Chapters
4 and 5) introduces clustering techniques to group individuals with sim-
ilar patterns, reducing noise and variability in EMA datasets. Clustering-
derived group models demonstrate superior performance compared to
personalized and traditional nomothetic approaches that utilize all data.
The results show that such a strong performance is not merely a ran-
dom outcome of combining multiple models but rather is driven by the
quality and relevance of the clusters themselves. The discovery of such
meaningful subgroups within the population is further explored (Chapter
6), which introduces methods for explaining clustering results. Specif-
ically, deep learning attention models were utilized, aiming to provide
clearer insights into the structures and key factors that differentiate the
clusters. This method is model-agnostic, making it applicable across var-
ious clustering algorithms. Furthermore, it serves as a general clustering
evaluation measure, enabling the assessment of any clustering result by
uncovering the patterns and features that define each cluster.

Inspired by the success of incorporating data from similar individu-
als into group models, the subsequent goal is to balance idiographic
and nomothetic approaches by placing greater emphasis on personal-
ized data. Specifically, this dissertation (Chapter 7) explores the ap-
plication and refinement of transfer learning methods, such as Transfer
AdaBoost, for EMA data, making a significant contribution to the field
of predictive modeling in psychology. While the average performance
of models incorporating group data is comparable to that of personal-
ized models, further analysis of individual-level changes reveals notable
improvements for several individuals. This highlights the value of lever-
aging relevant data from additional individuals to enhance personalized
predictions. This approach is not only impactful within the context of
EMA data but also generalizable to other domains where data is sparse
or limited at the individual level, helping to enhance the predictive accu-
racy across various scientific disciplines, such as healthcare, behavioral
and social science.

Overall, in this dissertation, interdisciplinary collaboration between
psychology, data science, and machine learning played a pivotal role.



203

By integrating expertise from these domains, the models developed
were better aligned with the complexity of mental disorders and prac-
tical applications, such as personalized interventions and treatments.
A critical component of this collaboration was ensuring interpretability,
where domain experts and data scientists worked closely to clarify the
goals of the analysis, what insights were most valuable, and how the
findings could be applied in practice. This reciprocal communication
allowed the models to balance the theoretical needs of psychological
research with the technical possibilities and limitations of advanced data
analysis, ultimately ensuring meaningful and actionable results.

Relevance

What is the (potential) contribution of the results of this research
to science, and if applicable to societal sectors and societal chal-
lenges?

This research contributes not only to the scientific understanding of
mental health modeling but also holds the potential to address key soci-
etal challenges in mental healthcare. With mental health issues on the
rise globally, considering the challenges in proper diagnosis and treat-
ment that lead to an increasing burden on healthcare systems, the re-
search of this dissertation focuses on modeling and predicting individual
psychopathology through EMA data, offering promising pathways for im-
proved healthcare solutions.

By improving predictive models of psychopathology, this research pri-
marily enhances our ability to better understand the complex hidden
relationships between psychopathology-related variables, such as emo-
tions, behaviors, and experiences. Specifically, using advanced non-
linear models, this research provides realistic and flexible representa-
tions of the underlying interactions, allowing for more precise identifica-
tion of these dynamics. Moreover, clustering techniques provide valu-
able insights into individual mental health profiles, revealing how peo-
ple both differ and share common patterns. This knowledge can refine
our understanding of diverse mental health trajectories and help identify
meaningful groupings within the population.

These enhanced models and enriched knowledge representation have
the potential for more precise and tailored treatments. A deeper under-
standing of individual and group profiles enables clinicians and mental
health professionals to develop interventions that are better suited to
the specific needs by relying on the characteristics of individuals or clus-
ters. This personalization can lead to more effective and timely inter-
ventions, ultimately improving patient outcomes and transforming how
mental health care can be provided.

In addition, the proposed nomothetic models reduce the need for ex-
tensive individual data collection, by leveraging aggregated data from
multiple individuals, which has important social implications. While these



204 Impact Paragraph

models initially require sufficient data across a population to be effective,
they mitigate the need for collecting large datasets from every individ-
ual. Through shared information, they enable the generalization of find-
ings across populations, making the models more accessible and prac-
tical for broader applications. This approach is particularly valuable in
resource-limited settings where data collection can be burdensome or
costly. Ultimately, it contributes to bridging the gap in access to mental
health services in regions where healthcare might be constrained due to
financial, geographical, or infrastructural challenges.

Target Audience

To whom are the research findings interesting and/or relevant? And
why?

This dissertation is designed to impact research in the fields of psycho-
pathology and mental health, as well as data science, jointly advancing
personalized medicine.

First, targeting researchers in psychopathology, particularly those
working on methodological and modeling advancements, this disser-
tation aims to bridge the gap between traditional linear models and
more advanced machine learning models. Particularly, Chapter 2 starts
with the limitations and assumptions of the current linear methods used
to model psychopathology, highlighting the complicated structure of
EMA data and the complexity of mental disorders. An important part
of this chapter is the connection between network linear approaches
and more advanced non-linear models. It is important to highlight that
adopting non-linear models can uncover the hidden relationships be-
tween variables, similar to linear models, but in a more realistic and
complex way.

Additionally, clinical psychologists and scientists in mental healthcare
can benefit from the findings, as the improved models offer practical
insights for a better understanding of the individual dynamics, and in-
teractions between variables, as well as the shared characteristics or
profiles and variability within each group of individuals. This knowledge
can help clinical psychologists design more personalized and effective
interventions and treatment strategies, making them more responsive
to individual needs. Particularly, within the context of the New Science
of Mental Disorders (NSMD1) project, these models provide a valuable
framework for studying mental health disorders, enabling more accurate
predictions that could ultimately help to tailor interventions to the needs
of diverse patient populations. Moreover, Chapter 6 specifically focuses
on explaining the clustering techniques in a way that is accessible to
domain experts. By making the clustering results interpretable, the re-
search ensures that clinical psychologists can understand and use these
findings to inform treatment decisions or design tailored interventions.

1https://www.nsmd.eu/

https://www.nsmd.eu/
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This emphasis on interpretability bridges the gap between data science
methodologies and clinical practice, enabling their collaboration.

Furthermore, this work is highly relevant to data scientists and re-
searchers working with EMA and time-series data, as it introduces novel
approaches to handle challenges inherent to complex and dynamic data
sets. Particularly, Chapters 3-7 present advanced methodologies for
modeling and analyzing time-series data, exploring key challenges such
as time-series similarity, time-series clustering evaluations and expla-
nations. These methods, while developed in the context of studying
psychopathology, have broad applicability across other fields that rely
on time-series data, such as personalized healthcare monitoring, cli-
mate science, biology and finance. Therefore, by providing adaptable
approaches, this research extends its impact beyond psychology, offer-
ing valuable tools for a wide range of disciplines dealing with sequential
data.

Activity

In what way can these target groups be involved and informed
about the research findings so that the knowledge gained can be
used in the future?

The majority of the content chapters of this dissertation have already
been described in various publications. In particular, Chapters 3 to 7
present studies that have been presented at five international confer-
ences and published in their associated peer-reviewed conference pro-
ceedings. Chapter 4 was also partially published in the Elsevier journal
Machine Learning with Applications. Further related works were also pre-
sented at the International Convention of Psychological Science (ICPS) in
2023 and at the IEEE 40th International Conference on Data Engineer-
ing Workshops (ICDEW) in 2024. Moreover, an interactive web appli-
cation has been developed alongside this research to visually explore
the EMA data and model outcomes, allowing users to interact with and
better understand the data and predictions derived from the models pre-
sented in this dissertation. The web application can be accessed at:
https://clustering-pilot-data.streamlit.app/.

https://clustering-pilot-data.streamlit.app/
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